Collaborative Research: SCALE MoDL: Representation Theoretic Foundations of Deep Learning
合作研究:SCALE MoDL:深度学习的表示理论基础
基本信息
- 批准号:2134274
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the past decade, deep learning has had transformative impacts across society. However, progress has often relied on heuristic methods, massive data, and great computing power. This comes with limited theoretical understanding and has at times given rise to failures of generalization and vulnerable performance in extreme scenarios. This project will address these limitations by developing strong theoretical foundations for deep learning using representation theory, which is the mathematical study of symmetry. Symmetry plays a key role in human reasoning. Greater understanding of the role symmetry plays in deep learning will unlock a variety of improved models. These include models that can learn from scientific knowledge and not just raw data, models with trustable, guaranteed performance, and models that can recombine patterns they have already learned — as humans do easily — to generalize to new situations more rapidly. An explicit goal of this project is to broaden research into why deep learning works. To this end, the investigators will integrate the research into education and establish a mentorship program for high school students from groups underrepresented in science.The goal of the research is to understand the role of representation theory in enabling efficient optimization and improved generalization of deep learning even in domains with approximate or unknown symmetry. This project pursues three lines of research that will broaden the impact of representation theory in deep learning beyond strict inductive biases. The first is the trade-off between the degree of symmetry in the model and the degree of symmetry in the domain. This line of research will study networks that combine equivariant and non-equivariant features. The second line of research will examine learning symmetry directly from data to improve generalization in domains without known symmetries. The third aim is to develop a theoretical basis for deep learning using quiver representations. This perspective reveals the symmetry of the structure of deep-learning models themselves, through their parameter spaces, even when the domains have no obvious symmetry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的十年中,深度学习对整个社会产生了变革性的影响。 然而,进步往往依赖于启发式方法,海量数据和强大的计算能力。 这伴随着有限的理论理解,有时会导致泛化失败和极端情况下的脆弱性能。该项目将通过使用表征理论为深度学习开发强大的理论基础来解决这些限制,表征理论是对称性的数学研究。 对称性在人类推理中起着关键作用。 更好地理解对称性在深度学习中的作用将解锁各种改进的模型。这些模型包括可以从科学知识而不仅仅是原始数据中学习的模型,具有可信赖的,有保证的性能的模型,以及可以重新组合他们已经学习的模式的模型-就像人类很容易做的那样-更快地推广到新的情况。 这个项目的一个明确目标是扩大对深度学习为什么有效的研究。 为此,研究人员将把这项研究融入教育,并为来自科学领域代表性不足的高中生建立导师计划。研究的目标是了解表征理论在实现深度学习的有效优化和改进泛化方面的作用,即使在近似或未知对称性的领域。 该项目追求三条研究路线,将扩展表征理论在深度学习中的影响,超越严格的归纳偏见。 首先是模型中的对称度和域中的对称度之间的权衡。 这条研究路线将研究结合了联合收割机等变和非等变特征的网络。 第二条研究路线将研究直接从数据中学习对称性,以提高没有已知对称性的领域的泛化能力。 第三个目标是为深度学习提供理论基础。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响评审标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probabilistic Symmetry for Multi-Agent Dynamics
- DOI:
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Sophia Sun;R. Walters;Jinxi Li;Rose Yu
- 通讯作者:Sophia Sun;R. Walters;Jinxi Li;Rose Yu
Automatic Symmetry Discovery with Lie Algebra Convolutional Network
- DOI:
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Nima Dehmamy;R. Walters;Yanchen Liu-;Dashun Wang;Rose Yu
- 通讯作者:Nima Dehmamy;R. Walters;Yanchen Liu-;Dashun Wang;Rose Yu
Approximately Equivariant Networks for Imperfectly Symmetric Dynamics
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Rui Wang;R. Walters;Rose Yu
- 通讯作者:Rui Wang;R. Walters;Rose Yu
Symmetry Teleportation for Accelerated Optimization
用于加速优化的对称隐形传态
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bo Zhao;Nima Dehmamy;Robin Walters;Rose Yu
- 通讯作者:Rose Yu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qi Yu其他文献
Association of Dopamine D2 Receptor Gene with Creative Ideation
多巴胺 D2 受体基因与创意的关联
- DOI:
10.1080/10400419.2017.1302758 - 发表时间:
2017-04 - 期刊:
- 影响因子:2.6
- 作者:
Qi Yu;Shun Zhang;Jinghuan Zhang - 通讯作者:
Jinghuan Zhang
A Kalman filtering based adaptive threshold algorithm for QRS complex detection
基于卡尔曼滤波的QRS波群检测自适应阈值算法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:5.1
- 作者:
Zhong Zhang;Qi Yu;Qihui Zhang;N. Ning;Jing Li - 通讯作者:
Jing Li
Synthesis and properties of boron doped ZnO nanorods on silicon substrate by low-temperature hydrothermal reaction
硅基硼掺杂ZnO纳米棒的低温水热反应合成及性能
- DOI:
10.1016/j.apsusc.2011.01.081 - 发表时间:
2011-05 - 期刊:
- 影响因子:6.7
- 作者:
Qi Yu;Hongdong Li;D;an Sang;Shiyong Gao;Liuan Li;Pinwen Zhu;Jujun Yuan - 通讯作者:
Jujun Yuan
A 3-10GHz UWB LNA using gm-boosting structure and inductive-peaking-based bandwidth extension technique in a 180 nm CMOS technology
3-10GHz UWB LNA 在 180 nm CMOS 技术中使用 gm 增强结构和基于感应峰值的带宽扩展技术
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yanchen Liu;Deyu Kong;RuiGuo;J.J.Wang;Ning Ning;Qi Yu;Jinping Wei;Yang Liu - 通讯作者:
Yang Liu
Developing an indicator system to foster sustainability in strategic planning in China: A case study of Pudong New Area, Shanghai
制定指标体系以促进中国战略规划的可持续性:以上海浦东新区为例
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:6.9
- 作者:
Kin-Che Lam;Marie K. Harder;Wei-chun Ma;Qi Yu - 通讯作者:
Qi Yu
Qi Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qi Yu', 18)}}的其他基金
CAREER: New Frontiers In Large-Scale Spatiotemporal Data Analysis
职业:大规模时空数据分析的新领域
- 批准号:
2146343 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CRII: III: Multiresolution Tensor Learning for Scalable and Interpretable Spatiotemporal Analysis
CRII:III:用于可扩展和可解释时空分析的多分辨率张量学习
- 批准号:
2037745 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CRII: III: Multiresolution Tensor Learning for Scalable and Interpretable Spatiotemporal Analysis
CRII:III:用于可扩展和可解释时空分析的多分辨率张量学习
- 批准号:
1850349 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CHS:Small:Utilizing synergy between human and computer information processing for complex visual information organization and use
CHS:Small:利用人与计算机信息处理之间的协同作用来组织和使用复杂的视觉信息
- 批准号:
1814450 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307253 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307251 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
- 批准号:
2322601 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




