CAREER: New Frontiers In Large-Scale Spatiotemporal Data Analysis
职业:大规模时空数据分析的新领域
基本信息
- 批准号:2146343
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This five-year career development plan aims to build a synergistic research and education program that advances analysis of large-scale spatiotemporal data (i.e., data collected across space and time) towards efficient, robust, and trustworthy real-time decision-making. Massive spatiotemporal data are emerging rapidly in various scientific fields from climate science to public health. Traditional spatiotemporal analysis tools either rely on strong modeling assumptions or are too slow to operate in real-time. While deep learning (DL) offers great flexibility and scalability, its ability to make sense of large-scale spatiotemporal data and ultimately contribute to scientific fields, is however, limited. A primary reason is the distinctive nature of spatiotemporal data: it is highly dynamic, governed by physical laws and has intricate interactions. These characteristics pose fundamental challenges to existing machine learning approaches.Inspired by the use cases in physical sciences, this research plan seeks to develop DL techniques that address three central challenges: (1) forecasting spatiotemporal dynamics while conforming to physical laws; (2) inferring spatiotemporal interactions to capture complex dependencies; and, (3) quantifying the uncertainty of spatiotemporal forecasts for decision making. The ultimate goal is to design DL tools that can emulate ocean currents, traffic flows and epidemic spread faster and more accurately than numerical solvers, thus allowing real-time scenario planning, control and strategy optimization. The education plan will develop new curricula at undergraduate, graduate level and massive open online courses (MOOCs). The outreach activities will emphasize the early engagement of women and minorities in machine learning research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个为期五年的职业发展计划旨在建立一个协同的研究和教育计划,推进大规模时空数据的分析(即,跨空间和时间收集的数据),以实现高效、稳健和值得信赖的实时决策。在从气候科学到公共卫生的各个科学领域,大量的时空数据正在迅速出现。传统的时空分析工具要么依赖于强大的建模假设,要么太慢,无法实时操作。虽然深度学习(DL)提供了很大的灵活性和可扩展性,但它理解大规模时空数据并最终为科学领域做出贡献的能力是有限的。一个主要原因是时空数据的独特性质:它是高度动态的,受物理定律支配,并具有复杂的相互作用。受物理科学用例的启发,本研究计划旨在开发DL技术,以解决三个核心挑战:(1)预测时空动态,同时符合物理定律;(2)推断时空相互作用,以捕获复杂的依赖关系;(3)量化时空预测的不确定性,用于决策制定。最终目标是设计出能够比数值求解器更快、更准确地模拟洋流、交通流和疫情传播的DL工具,从而实现实时场景规划、控制和策略优化。该教育计划将开发本科、研究生阶段的新课程和大规模开放式在线课程(MOOC)。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LIMO: Latent Inceptionism for Targeted Molecule Generation
- DOI:10.48550/arxiv.2206.09010
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:P. Eckmann;Kunyang Sun;Bo Zhao;Mudong Feng;M. Gilson;Rose Yu
- 通讯作者:P. Eckmann;Kunyang Sun;Bo Zhao;Mudong Feng;M. Gilson;Rose Yu
Meta-Learning Dynamics Forecasting Using Task Inference
- DOI:
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Rui Wang;R. Walters;Rose Yu
- 通讯作者:Rui Wang;R. Walters;Rose Yu
Approximately Equivariant Networks for Imperfectly Symmetric Dynamics
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Rui Wang;R. Walters;Rose Yu
- 通讯作者:Rui Wang;R. Walters;Rose Yu
Multi-fidelity Hierarchical Neural Processes
多保真分层神经过程
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dongxia Wu, Matteo Chinazzi
- 通讯作者:Dongxia Wu, Matteo Chinazzi
Symmetry Teleportation for Accelerated Optimization
用于加速优化的对称隐形传态
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bo Zhao;Nima Dehmamy;Robin Walters;Rose Yu
- 通讯作者:Rose Yu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qi Yu其他文献
Association of Dopamine D2 Receptor Gene with Creative Ideation
多巴胺 D2 受体基因与创意的关联
- DOI:
10.1080/10400419.2017.1302758 - 发表时间:
2017-04 - 期刊:
- 影响因子:2.6
- 作者:
Qi Yu;Shun Zhang;Jinghuan Zhang - 通讯作者:
Jinghuan Zhang
A Kalman filtering based adaptive threshold algorithm for QRS complex detection
基于卡尔曼滤波的QRS波群检测自适应阈值算法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:5.1
- 作者:
Zhong Zhang;Qi Yu;Qihui Zhang;N. Ning;Jing Li - 通讯作者:
Jing Li
Synthesis and properties of boron doped ZnO nanorods on silicon substrate by low-temperature hydrothermal reaction
硅基硼掺杂ZnO纳米棒的低温水热反应合成及性能
- DOI:
10.1016/j.apsusc.2011.01.081 - 发表时间:
2011-05 - 期刊:
- 影响因子:6.7
- 作者:
Qi Yu;Hongdong Li;D;an Sang;Shiyong Gao;Liuan Li;Pinwen Zhu;Jujun Yuan - 通讯作者:
Jujun Yuan
A 3-10GHz UWB LNA using gm-boosting structure and inductive-peaking-based bandwidth extension technique in a 180 nm CMOS technology
3-10GHz UWB LNA 在 180 nm CMOS 技术中使用 gm 增强结构和基于感应峰值的带宽扩展技术
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yanchen Liu;Deyu Kong;RuiGuo;J.J.Wang;Ning Ning;Qi Yu;Jinping Wei;Yang Liu - 通讯作者:
Yang Liu
Developing an indicator system to foster sustainability in strategic planning in China: A case study of Pudong New Area, Shanghai
制定指标体系以促进中国战略规划的可持续性:以上海浦东新区为例
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:6.9
- 作者:
Kin-Che Lam;Marie K. Harder;Wei-chun Ma;Qi Yu - 通讯作者:
Qi Yu
Qi Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qi Yu', 18)}}的其他基金
Collaborative Research: SCALE MoDL: Representation Theoretic Foundations of Deep Learning
合作研究:SCALE MoDL:深度学习的表示理论基础
- 批准号:
2134274 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CRII: III: Multiresolution Tensor Learning for Scalable and Interpretable Spatiotemporal Analysis
CRII:III:用于可扩展和可解释时空分析的多分辨率张量学习
- 批准号:
2037745 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CRII: III: Multiresolution Tensor Learning for Scalable and Interpretable Spatiotemporal Analysis
CRII:III:用于可扩展和可解释时空分析的多分辨率张量学习
- 批准号:
1850349 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CHS:Small:Utilizing synergy between human and computer information processing for complex visual information organization and use
CHS:Small:利用人与计算机信息处理之间的协同作用来组织和使用复杂的视觉信息
- 批准号:
1814450 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似海外基金
CAREER: New Frontiers of Private Learning and Synthetic Data
职业:私人学习和合成数据的新领域
- 批准号:
2339775 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in Continuous-time Open Quantum Systems
职业:连续时间开放量子系统的新领域
- 批准号:
2238766 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in Graph Generation
职业:图生成的新领域
- 批准号:
2239869 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in the Dynamics of Topological Solitons
职业:拓扑孤子动力学的新领域
- 批准号:
2235233 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in Bayesian Deep Learning
职业:贝叶斯深度学习的新领域
- 批准号:
2145492 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in Quantum Protocols, Operator Algebras, and Property Testing
职业:量子协议、算子代数和属性测试的新领域
- 批准号:
2144219 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: New Analytic Frontiers for Symmetric Cryptography
职业:对称密码学的新分析前沿
- 批准号:
2046540 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: New Frontiers for Frobenius, Singularity Theory, Differential Operators, and Local Cohomology
职业生涯:弗罗贝尼乌斯、奇点理论、微分算子和局部上同调的新领域
- 批准号:
1945611 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in Computing on Private Data
职业:私有数据计算的新领域
- 批准号:
1942789 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in Time Series Analysis
职业:时间序列分析的新领域
- 批准号:
1455172 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant