Spatially Patterned Nano/Microparticles to Traverse Biological Barriers

空间图案纳米/微粒跨越生物屏障

基本信息

  • 批准号:
    1507238
  • 负责人:
  • 金额:
    $ 38.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Non-Technical: This award by the Biomaterials program in the Division of Materials Research is to create and study novel multifunctional particles which mimic bacterial processes for beneficial purposes such as drug delivery. The biomaterial is based upon a newly created form of Janus particle, which displays biological ligands on a particle in a spatially distinct manner, for example with a right and left hemisphere. Since the particle ligands are clustered and polarized, highly effective biological reactions can be harnessed by the particle to enter cells and translocate within cells. Interactions of the particles with a model of the blood brain barrier will be studied to understand the efficiency of particle delivery to the brain. This project will provide interdisciplinary training opportunities to graduate and undergraduate students on biomaterials, microtechnology, and neuroscience. The research activities will also promote the recruitment and mentoring of diverse students in cutting-edge scientific techniques through outreach in the Atlanta public high schools.Technical: Particles that can actively traverse biological barriers, such as the blood-brain barrier, would be highly beneficial for a variety of basic science and applied purposes. Traversing biological barriers is routinely demonstrated by some pathogens. For example, the bacterium Listeria monocytogenes can asymmetrically express specific proteins to efficiently internalize into cells, escape a phagosome, and actuate within the cell cytosol via nucleated actin polymerization to escape the cell. However, designing biomaterials that can accomplish these tasks is a challenge. This study aims to create new, multifunctional particles which mimic pathogenic mechanisms to enter an epithelial cell layer and actively transport within the cell to exit on the basal side. Janus particles will be designed as a new class of multifunctional, topographically distinct particles that can autonomously transverse an epithelial barrier. These particles will be created with micropatterning technologies to produce chemically-distinct regions on the particle surface to which effector proteins are linked to mediate each step of transcytosis. The investigators hypothesize that high density of effector ligands through topographic separation will engineer particles with potent and coordinated ligand-mediated processes characteristically achieved by biological organisms. Interactions of the particles with a model of the blood brain barrier will be studied to understand the efficiency of particle delivery to and within the brain. The proposed program will help inspire graduate and undergraduate students from diverse disciplines and backgrounds to study how microfabrication technologies can harness bio-inspired effectors to create new biomimetic materials to widely impact the biosciences. Additionally the program will develop new curriculum for engineers and scientists to design multifunctional particles, which will further include the recruiting of high school students and teachers to contribute to research studies.
非技术:该奖项由材料研究部的生物材料项目授予,旨在创造和研究新型多功能颗粒,这些颗粒模拟细菌过程,用于药物输送等有益目的。该生物材料基于新创建的Janus粒子形式,其以空间上不同的方式在粒子上显示生物配体,例如具有右半球和左半球。由于粒子配体是聚集和极化的,因此粒子可以利用高效的生物反应进入细胞并在细胞内移位。将研究颗粒与血脑屏障模型的相互作用,以了解颗粒递送到大脑的效率。该项目将为研究生和本科生提供生物材料、微技术和神经科学方面的跨学科培训机会。研究活动还将通过在亚特兰大公立高中的推广活动,促进招募和指导不同学生掌握尖端科学技术。技术:能够主动穿越生物屏障(如血脑屏障)的粒子将对各种基础科学和应用目的非常有益。一些病原体通常会穿越生物屏障。例如,细菌单核细胞增多性李斯特菌可以不对称地表达特异性蛋白质以有效地内化到细胞中,逃离吞噬体,并且在细胞胞质溶胶内通过有核肌动蛋白聚合致动以逃离细胞。然而,设计能够完成这些任务的生物材料是一个挑战。这项研究旨在创造新的多功能颗粒,模拟致病机制进入上皮细胞层,并在细胞内积极运输,在基底侧离开。Janus颗粒将被设计为一类新的多功能的,地形不同的颗粒,可以自主穿越上皮屏障。这些颗粒将用微图案化技术产生,以在颗粒表面上产生化学上不同的区域,效应蛋白连接到该区域以介导转胞吞的每个步骤。研究人员假设,高密度的效应配体通过地形分离将工程粒子与强大的和协调的配体介导的过程,生物有机体的特点实现。将研究颗粒与血脑屏障模型的相互作用,以了解颗粒递送到大脑和大脑内的效率。拟议的计划将有助于激励来自不同学科和背景的研究生和本科生研究微制造技术如何利用生物启发效应器来创造新的仿生材料,以广泛影响生物科学。此外,该计划还将为工程师和科学家开发新的课程,以设计多功能粒子,其中还将包括招募高中学生和教师为研究做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Todd Sulchek其他文献

In-cell NMR based technology to study protein interactions
  • DOI:
    10.1016/j.bpj.2021.11.1170
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Alexander Shekhtman;Leonard Breindel;Nicholas Sciolino;David Burz;Todd Sulchek
  • 通讯作者:
    Todd Sulchek
Delivery of target proteins through microfluidics supports increased cell viability for in-cell NMR spectroscopy
  • DOI:
    10.1016/j.bpj.2021.11.733
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Nicholas Sciolino;Anna Liu;Leonard Breindel;Aaron Premo;David S. Burz;Todd Sulchek;Alexander Shekhtman
  • 通讯作者:
    Alexander Shekhtman
Correlating Mechanical and Gene Expression Data on the Single Cell Level to Investigate Metastasis
  • DOI:
    10.1016/j.bpj.2019.11.1150
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Katherine M. Young;Congmin Xu;Kelly Ahkee;Roman Mezencev;Peng Qiu;Todd Sulchek
  • 通讯作者:
    Todd Sulchek
Single-platelet nanomechanics measured by high-throughput cytometry
通过高通量细胞计数法测量的单血小板纳米力学
  • DOI:
    10.1038/nmat4772
  • 发表时间:
    2016-10-10
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    David R. Myers;Yongzhi Qiu;Meredith E. Fay;Michael Tennenbaum;Daniel Chester;Jonas Cuadrado;Yumiko Sakurai;Jong Baek;Reginald Tran;Jordan C. Ciciliano;Byungwook Ahn;Robert G. Mannino;Silvia T. Bunting;Carolyn Bennett;Michael Briones;Alberto Fernandez-Nieves;Michael L. Smith;Ashley C. Brown;Todd Sulchek;Wilbur A. Lam
  • 通讯作者:
    Wilbur A. Lam

Todd Sulchek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Todd Sulchek', 18)}}的其他基金

Collaborative Research: RECODE: Microfluidic and genetic technologies to direct and select retinal cell types from human induced pluripotent stem cell-derived retinal organoids
合作研究:RECODE:微流体和遗传技术从人类诱导多能干细胞衍生的视网膜类器官中指导和选择视网膜细胞类型
  • 批准号:
    2225476
  • 财政年份:
    2022
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
FMSG: Bio: End-to-End Continuous Manufacture of Cell Therapies Enabled by Robotics and Microfluidic Processing
FMSG:生物:通过机器人和微流体处理实现细胞疗法的端到端连续制造
  • 批准号:
    2134701
  • 财政年份:
    2021
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Understanding the Relationship Between Cell Mechanical Variability and Gene Expression Through Single Cell Experiments and Modeling
通过单细胞实验和建模了解细胞机械变异与基因表达之间的关系
  • 批准号:
    1538161
  • 财政年份:
    2015
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
CAREER: Understanding Multivalent Biological Bonds for Biosensor Applications
职业:了解生物传感器应用的多价生物键
  • 批准号:
    1055437
  • 财政年份:
    2011
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
High Speed Atomic Force Microscopy for Real Time Imaging of Biological Processes
用于生物过程实时成像的高速原子力显微镜
  • 批准号:
    1063279
  • 财政年份:
    2011
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
Microfluidic separation of particles based upon stiffness
基于刚度的颗粒微流体分离
  • 批准号:
    0932510
  • 财政年份:
    2009
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER: Quantum Manufacturing: In-situ Nano-Patterned Topological Josephson Junctions
EAGER:量子制造:原位纳米图案拓扑约瑟夫森结
  • 批准号:
    2240489
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Hydrophilic Nano patterned Surfaces for Macrophage Polarization and Drug Delivery
用于巨噬细胞极化和药物输送的亲水性纳米图案表面
  • 批准号:
    576948-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Alliance Grants
Evaluation of collective motion of microtubules on nano-patterned kinesins
纳米图案驱动蛋白上微管集体运动的评估
  • 批准号:
    21K18053
  • 财政年份:
    2021
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Design and fabrication micro/nano patterned surfaces using fluid-based techniques
使用基于流体的技术设计和制造微/纳米图案表面
  • 批准号:
    2436276
  • 财政年份:
    2020
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Studentship
Selective area growth of cubic group III-Nitrides on nano-patterned 3C-SiC (001) substrates
纳米图案 3C-SiC (001) 衬底上立方 III 族氮化物的选择性区域生长
  • 批准号:
    418748882
  • 财政年份:
    2019
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Research Grants
Construction of nano-structured functional thin films on flexible nanoimprinted polymer substrates with atomically patterned surfaces
在具有原子图案表面的柔性纳米压印聚合物基底上构建纳米结构功能薄膜
  • 批准号:
    18K18995
  • 财政年份:
    2018
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Fabrication of nano-patterned organic polymer substrates with atomic steps for creation of functional nanostructures
通过原子步骤制造纳米图案有机聚合物基材,以创建功能性纳米结构
  • 批准号:
    16K13636
  • 财政年份:
    2016
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Effect of Micro-/Nano-patterned Wettability on the Fundamentals of Condensation Heat Transfer
微/纳米图案润湿性对冷凝传热基础的影响
  • 批准号:
    16K18029
  • 财政年份:
    2016
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Design and implementation of novel magnetic tweezers devices for force application on micro and nano scaled biological systems with precise temporal and patterned 3-dimensional spatial resolution.
设计和实现新型磁性镊子装置,用于在微米级和纳米级生物系统上施加力,具有精确的时间和图案化的 3 维空间分辨率。
  • 批准号:
    454094-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Design and implementation of novel magnetic tweezers devices for force application on micro and nano scaled biological systems with precise temporal and patterned 3-dimensional spatial resolution.
设计和实现新型磁性镊子装置,用于在微米级和纳米级生物系统上施加力,具有精确的时间和图案化的 3 维空间分辨率。
  • 批准号:
    454094-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了