High Speed Atomic Force Microscopy for Real Time Imaging of Biological Processes
用于生物过程实时成像的高速原子力显微镜
基本信息
- 批准号:1063279
- 负责人:
- 金额:$ 34.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-02-15 至 2015-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractIn all of its forms, the microscope is the most widely used tool in the investigation of biological structure and function. The study of living and moving biological systems, with sub-second time scale resolution and with nanometer length scale resolution, is becoming increasingly important in biological research. A critical example of biological research that requires faster, high resolution imaging of dynamic processes is the degradation of cellulosic materials by enzymatic, chemical, and physical processes. Improved cellulose degradation is an important step to efficient ethanol production and will likely be critical to the nation for development of a sustainable supply of fuel suitable for transportation. This project is to develop a system, based on the Atomic Force Microscope (AFM), for nanometer scale imaging of biological samples that is several orders of magnitude faster than current AFMs. The project will develop both new methodologies and instrumentation for the real-time and high-resolution imaging of dynamic biological processes. The project addresses a critical limitation for the AFM research community, while building upon the advances of current high-speed AFM systems. The technological advancement of this fast-scanning AFM is an active, self-actuating microcantilever. The system will also utilize a novel passivation scheme to provide robust operation in all liquid environments encountered in biological imaging. Moreover, the dimensions of the active probe will be miniaturized, to retain fast dynamics as well as delicate operation. The application of this fast-scanning system will be the real-time imaging of the degradation of cellulose by the cellulase enzyme from the fungus Trichonderma reesei. This system will visualize the mechanism of degradation and determine the kinetics of this process. The broader impact of this research will be to radically improve the characterization methods available to scientists and engineers working in biology and biotechnology. High speed scanning systems operating in microscopy labs across the country, where biologists could utilize video rate atomic force microscopy to obtain the fastest and highest resolution images of dynamic biological processes, would be enabled by this project. The microscope will also be capable of high speed molecular recognition for surface characterization of lipid membranes, proteins and molecular motors, cells and other biological systems. The initial step will be an investigation of the kinetic interactions between cellulose and cellulases, with the aim of improving production of cellulosic ethanol. An overarching priority for these advancements is to produce technology that is transferable to other commercial AFM systems, directly enabling the scanning probe research conducted at various research and industry labs. With the contributions of this project, dynamic, nanoscale imaging and manipulation can be extended to video rates, in a manner akin to scanning electron microscopy or video optical microscopy. The proposed program will also create educational opportunities for students to learn about the interface between physical science, biological science, and nanotechnology by focusing on graduate training, undergraduate involvement, and K-12 outreach efforts.
在各种形式中,显微镜是研究生物结构和功能最广泛使用的工具。对生命和运动的生物系统的研究,具有亚秒级的时间尺度分辨率和纳米级的长度尺度分辨率,在生物学研究中变得越来越重要。生物学研究的一个重要例子是需要更快、高分辨率的动态过程成像,这就是通过酶、化学和物理过程降解纤维素材料。改善纤维素降解是高效乙醇生产的重要一步,对于开发适合运输的可持续燃料供应可能至关重要。该项目旨在开发一种基于原子力显微镜(AFM)的系统,用于生物样品的纳米级成像,比目前的AFM快几个数量级。该项目将为动态生物过程的实时和高分辨率成像开发新的方法和仪器。该项目解决了AFM研究界的一个关键限制,同时建立在当前高速AFM系统的进步基础上。这种快速扫描原子力显微镜的技术进步是一个主动的,自驱动的微悬臂梁。该系统还将利用一种新的钝化方案,在生物成像中遇到的所有液体环境中提供稳健的操作。此外,有源探头的尺寸将被小型化,以保持快速的动态以及微妙的操作。该快速扫描系统的应用将是纤维素酶降解纤维素的实时成像从真菌里氏木霉。该系统将可视化降解机制并确定该过程的动力学。这项研究的更广泛影响将是从根本上改善生物学和生物技术领域的科学家和工程师可用的表征方法。在全国各地的显微镜实验室中运行的高速扫描系统,生物学家可以利用视频速率原子力显微镜获得动态生物过程的最快和最高分辨率的图像,将通过该项目实现。该显微镜还将能够高速分子识别,用于脂质膜,蛋白质和分子马达,细胞和其他生物系统的表面表征。第一步是研究纤维素和纤维素酶之间的动力学相互作用,目的是提高纤维素乙醇的生产。这些进步的首要任务是生产可转移到其他商业AFM系统的技术,直接实现在各种研究和工业实验室进行的扫描探针研究。随着该项目的贡献,动态,纳米级成像和操作可以扩展到视频速率,以类似于扫描电子显微镜或视频光学显微镜的方式。该计划还将为学生创造教育机会,通过专注于研究生培训,本科生参与和K-12外展工作,了解物理科学,生物科学和纳米技术之间的接口。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd Sulchek其他文献
In-cell NMR based technology to study protein interactions
- DOI:
10.1016/j.bpj.2021.11.1170 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Alexander Shekhtman;Leonard Breindel;Nicholas Sciolino;David Burz;Todd Sulchek - 通讯作者:
Todd Sulchek
Delivery of target proteins through microfluidics supports increased cell viability for in-cell NMR spectroscopy
- DOI:
10.1016/j.bpj.2021.11.733 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Nicholas Sciolino;Anna Liu;Leonard Breindel;Aaron Premo;David S. Burz;Todd Sulchek;Alexander Shekhtman - 通讯作者:
Alexander Shekhtman
Correlating Mechanical and Gene Expression Data on the Single Cell Level to Investigate Metastasis
- DOI:
10.1016/j.bpj.2019.11.1150 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Katherine M. Young;Congmin Xu;Kelly Ahkee;Roman Mezencev;Peng Qiu;Todd Sulchek - 通讯作者:
Todd Sulchek
Single-platelet nanomechanics measured by high-throughput cytometry
通过高通量细胞计数法测量的单血小板纳米力学
- DOI:
10.1038/nmat4772 - 发表时间:
2016-10-10 - 期刊:
- 影响因子:38.500
- 作者:
David R. Myers;Yongzhi Qiu;Meredith E. Fay;Michael Tennenbaum;Daniel Chester;Jonas Cuadrado;Yumiko Sakurai;Jong Baek;Reginald Tran;Jordan C. Ciciliano;Byungwook Ahn;Robert G. Mannino;Silvia T. Bunting;Carolyn Bennett;Michael Briones;Alberto Fernandez-Nieves;Michael L. Smith;Ashley C. Brown;Todd Sulchek;Wilbur A. Lam - 通讯作者:
Wilbur A. Lam
Todd Sulchek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd Sulchek', 18)}}的其他基金
Collaborative Research: RECODE: Microfluidic and genetic technologies to direct and select retinal cell types from human induced pluripotent stem cell-derived retinal organoids
合作研究:RECODE:微流体和遗传技术从人类诱导多能干细胞衍生的视网膜类器官中指导和选择视网膜细胞类型
- 批准号:
2225476 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
Standard Grant
FMSG: Bio: End-to-End Continuous Manufacture of Cell Therapies Enabled by Robotics and Microfluidic Processing
FMSG:生物:通过机器人和微流体处理实现细胞疗法的端到端连续制造
- 批准号:
2134701 - 财政年份:2021
- 资助金额:
$ 34.31万 - 项目类别:
Standard Grant
Spatially Patterned Nano/Microparticles to Traverse Biological Barriers
空间图案纳米/微粒跨越生物屏障
- 批准号:
1507238 - 财政年份:2015
- 资助金额:
$ 34.31万 - 项目类别:
Standard Grant
Understanding the Relationship Between Cell Mechanical Variability and Gene Expression Through Single Cell Experiments and Modeling
通过单细胞实验和建模了解细胞机械变异与基因表达之间的关系
- 批准号:
1538161 - 财政年份:2015
- 资助金额:
$ 34.31万 - 项目类别:
Standard Grant
CAREER: Understanding Multivalent Biological Bonds for Biosensor Applications
职业:了解生物传感器应用的多价生物键
- 批准号:
1055437 - 财政年份:2011
- 资助金额:
$ 34.31万 - 项目类别:
Continuing Grant
Microfluidic separation of particles based upon stiffness
基于刚度的颗粒微流体分离
- 批准号:
0932510 - 财政年份:2009
- 资助金额:
$ 34.31万 - 项目类别:
Continuing Grant
相似海外基金
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
- 批准号:
24K18450 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
High-Speed Atomic Force Microscope
高速原子力显微镜
- 批准号:
532150447 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Major Research Instrumentation
Atomic force microscope for high-speed, nanomechanical and electrochemical characterizations
用于高速、纳米力学和电化学表征的原子力显微镜
- 批准号:
529852963 - 财政年份:2023
- 资助金额:
$ 34.31万 - 项目类别:
Major Research Instrumentation
ULTRA-SPEED ATOMIC FORCE MICROSCOPY FOR CRYSTALLISATION
用于结晶的超高速原子力显微镜
- 批准号:
EP/W036479/1 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
Research Grant
Development of clinical-fit aptamer targeting CYP24A1 using an integrated approach of high-speed atomic force microscopy and molecular docking
使用高速原子力显微镜和分子对接的集成方法开发针对 CYP24A1 的临床适配体
- 批准号:
21K15239 - 财政年份:2021
- 资助金额:
$ 34.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
High-speed single cell diagnosis by atomic force microscopy
原子力显微镜高速单细胞诊断
- 批准号:
21H01787 - 财政年份:2021
- 资助金额:
$ 34.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Pushing the Speed Limits of High-Speed Atomic Force Microscopy
突破高速原子力显微镜的速度极限
- 批准号:
2598083 - 财政年份:2021
- 资助金额:
$ 34.31万 - 项目类别:
Studentship
Determination of the Key Parameters Causing Unexplained Dynamic Phenomena in High-Speed Atomic Force Microscopy
高速原子力显微镜中引起无法解释的动态现象的关键参数的确定
- 批准号:
1934772 - 财政年份:2020
- 资助金额:
$ 34.31万 - 项目类别:
Standard Grant
Mechanical stability of microtubules investigated under unidirectional strain using combined fluorescence microscopy and high-speed atomic force microscopy
使用组合荧光显微镜和高速原子力显微镜研究单向应变下微管的机械稳定性
- 批准号:
20K03889 - 财政年份:2020
- 资助金额:
$ 34.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)