FMRG: Eco: Sustainable Route to 3D Solid-State Sodium-ion Battery by Direct Ink Writing and Capillary Rise Infiltration
FMRG:Eco:通过直接墨水写入和毛细管上升渗透实现 3D 固态钠离子电池的可持续途径
基本信息
- 批准号:2134715
- 负责人:
- 金额:$ 270万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
While lithium-ion batteries have become increasingly popular in applications such as electric vehicles and grid energy storage, the roll-to-roll process used to manufacture these batteries is significantly inefficient. Furthermore, the recycling yield of materials used as electrodes in these batteries is very low. In addition, there are substantial geopolitical risks associated with the supply chains of critical elements such as the lithium and cobalt materials used in lithium-ion batteries. This Future Manufacturing Research Grant (FMRG) EcoManufacturing award will support fundamental research to eliminate these drawbacks by enabling a cross-disciplinary team of researchers from academia, a national laboratory and industry to investigate a novel Eco Manufacturing route to lithium- and cobalt-free three-dimensional solid-state sodium-ion batteries in which the solid electrolyte is made of polymer composites, and the electrodes are solely made of Earth-abundant elements such as sodium, potassium, manganese and nickel. The battery manufacturing concept only involves direct ink writing-based 3D printing in combination with solid-state conversion and capillary rise infiltration. These are sustainable processes that eliminate several deficiencies encountered in the conventional roll-to-roll battery manufacturing method. In addition to the research effort described above, the team plans to train the battery workforce of the next generation by creating an innovative hybrid online/in-person education and workforce development program called the Northeast Battery Workforce Training Program (NBWTP). This workforce program targets adult-learners, career-seekers without academic degrees in the field of batteries, underrepresented minorities (URMs), and veterans returning to civilian life, who will be trained to become “Battery Ready Vets.” Industrial partners and the Kleinman Center for Energy Policy at Penn will contribute to the development of this innovative workforce training program. To eliminate the deficiencies encountered in the conventional roll-to-roll battery manufacturing process, the team will develop a sustainable route to three-dimensional solid-state sodium-ion batteries based on the following six integrated thrusts: Thrust #1 (Scaffold thrust) will use direct ink writing to print a three-dimensional porous metal scaffold with both microscale and macroscale pores. Thrust #2 (Cathode thrust) will use solid-state conversion to partially convert the microscale pore walls of the scaffold into a cathode, resulting in a three-dimensional scaffold/cathode composite. Thrust #3 (Polymer electrolyte thrust) will investigate two polymer-based solid-state electrolytes infiltrated in the microscale pores of the scaffold/cathode composite using capillary rise infiltration. Thrust #4 (Anode and full battery thrust) will use capillary rise infiltration to impregnate the macroscale pores with a “self-healing” sodium anode and make the full three-dimensional solid-state sodium-ion battery. To eliminate sodium dendrite-induced short-circuiting and achieve ultralong cycle life, the “self-healing” sodium anode will transform into a liquid when the battery is operating at moderate temperatures. Thrust #5 (Recycling thrust) will use air-free electrolytic leaching to recycle used batteries. Thrust #6 (Workforce thrust) will establish a self-sustained hybrid online/in-person workforce development program to train future battery workers. This workforce training includes a professional certificate program consisting of online courses offered through Canvas Network in the form of Massive Open Online Courses (MOOCs).This Future Manufacturing award is supported by the Division of Materials Research (DMR) in the Directorate for Mathematical and Physical Sciences (MPS) and co-funded by the Division of Chemistry (CHE) in MPS, the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) in the Directorate for Engineering (ENG), and the Division of Electrical, Communications and Cyber Systems (ECCS) in ENG.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然锂离子电池在电动汽车和电网储能等应用中越来越受欢迎,但用于制造这些电池的卷对卷工艺效率低下。此外,在这些电池中用作电极的材料的回收率非常低。此外,锂离子电池中使用的锂和钴材料等关键元素的供应链也存在重大地缘政治风险。这个未来制造研究资助(FMRG)生态制造奖将支持基础研究,以消除这些缺点,使来自学术界,国家实验室和工业界的跨学科研究人员团队能够研究一种新的生态制造路线,以实现无锂和钴的三维固态钠离子电池,其中固体电解质由聚合物复合材料制成,电极仅由地球上丰富的元素如钠、钾、锰和镍制成。电池制造概念仅涉及基于直接墨水写入的3D打印,并结合固态转换和毛细上升渗透。这些是可持续的工艺,消除了传统卷对卷电池制造方法中遇到的几个缺陷。除了上述研究工作外,该团队还计划通过创建一个创新的混合在线/面对面教育和劳动力发展计划来培训下一代电池劳动力,该计划称为东北电池劳动力培训计划(NBWTP)。该劳动力计划的目标是成年学习者,在电池领域没有学位的求职者,代表性不足的少数民族(URM),以及返回平民生活的退伍军人,他们将接受培训成为“电池就绪兽医”。工业合作伙伴和宾夕法尼亚州克莱曼能源政策中心将为这一创新的劳动力培训计划的发展做出贡献。 为了消除传统卷对卷电池制造过程中遇到的缺陷,该团队将基于以下六个集成推力开发三维固态钠离子电池的可持续路线:推力#1(支架推力)将使用直接墨水书写打印三维多孔金属支架,同时具有微观和宏观孔。推力#2(阴极推力)将使用固态转化将支架的微米级孔壁部分转化为阴极,从而产生三维支架/阴极复合材料。推力#3(聚合物电解质推力)将研究使用毛细上升渗透渗透在支架/阴极复合材料的微尺度孔中的两种基于聚合物的固态电解质。推力#4(阳极和全电池推力)将使用毛细上升渗透来用“自修复”钠阳极覆盖宏观孔,并制造全三维固态钠离子电池。为了消除钠枝晶引起的短路并实现超长的循环寿命,当电池在中等温度下工作时,“自修复”钠阳极将转变为液体。推力#5(回收推力)将使用无空气电解浸出回收废旧电池。第6个目标(劳动力目标)将建立一个自我维持的混合在线/面对面劳动力发展计划,以培训未来的电池工人。该劳动力培训包括一个专业证书计划,该计划由Canvas Network以大规模开放式在线课程(MOOC)的形式提供的在线课程组成。该未来制造奖由数学和物理科学局(MPS)的材料研究部(DMR)支持,并由MPS的化学部(CHE),民用部门,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Detsi其他文献
Isolating intermediate Mgsub11/subCusub6/subAlsub12/sub phase in ternary Mg-Cu-Al alloy by electrolytic dealloying
通过电解脱合金法分离三元镁铜铝合金中的中间相 MgCu₆Al₁₂
- DOI:
10.1016/j.scriptamat.2022.115039 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:5.600
- 作者:
Timothy Lee;Jintao Fu;Lin Wang;Jiaxin Liu;Samuel S. Welborn;Johanna Nelson Weker;Eric Detsi - 通讯作者:
Eric Detsi
Sacrificial element recovery through the Kirkendall effect during electrolytic dealloying
- DOI:
10.1557/s43577-025-00892-0 - 发表时间:
2025-04-23 - 期刊:
- 影响因子:4.900
- 作者:
Eric Detsi;Jeff Th. M. DeHosson - 通讯作者:
Jeff Th. M. DeHosson
Tri-layer nanoporous silver | silver | silver by etching without sacrificing materials through the Kirkendall effect
通过柯肯达尔效应在不牺牲材料的情况下蚀刻得到的三层纳米多孔银|银|银
- DOI:
10.1016/j.actamat.2024.120685 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:9.300
- 作者:
Alexander K. Ng;Hyeongjun Koh;Eric Detsi - 通讯作者:
Eric Detsi
Tri-layer nanoporous silver | gold | silver by etching without sacrificing materials through the Kirkendall effect
- DOI:
10.1016/j.actamat.2024.120574 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Alexander K. Ng;Hyeongjun Koh;Eric Detsi - 通讯作者:
Eric Detsi
Eric Detsi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Detsi', 18)}}的其他基金
I-Corps: Two-step water splitting method using an electrochemical Zinc/Zinc Oxide cycle to produce hydrogen
I-Corps:使用电化学锌/氧化锌循环生产氢气的两步水分解方法
- 批准号:
2405325 - 财政年份:2024
- 资助金额:
$ 270万 - 项目类别:
Standard Grant
CAREER: Understanding and Overcoming the Fundamental Barriers to the Direct Reduction of Aluminum Hydroxide to Aluminum Metal
职业:了解并克服氢氧化铝直接还原为金属铝的基本障碍
- 批准号:
2047851 - 财政年份:2021
- 资助金额:
$ 270万 - 项目类别:
Standard Grant
EAGER: Understanding Electrochemical Alloying Reaction of Nanostructured Silicon with Magnesium: Impact of Nanoscale Silicon Processing
EAGER:了解纳米结构硅与镁的电化学合金化反应:纳米硅加工的影响
- 批准号:
1840672 - 财政年份:2018
- 资助金额:
$ 270万 - 项目类别:
Standard Grant
相似国自然基金
Ti-MXene基原子级分散金属催化剂本征结构设计及其耦合电催化微观环境增强ECO2RR产甲醇机理研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
面向功能ECO的不等价逻辑抽取方法研究
- 批准号:61204047
- 批准年份:2012
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
中外生态村(Eco-village)的比较研究与实践
- 批准号:50678112
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 270万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 270万 - 项目类别:
Standard Grant
Toward carbon-neutral society: Development of a full-sustainable eco-friendly green mining process for gold recovery
迈向碳中和社会:开发完全可持续的环保绿色采矿工艺以回收黄金
- 批准号:
24K17540 - 财政年份:2024
- 资助金额:
$ 270万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Eco-innovative technologies for improved nutrition, sustainable production and marketing of agroecological food products in Africa (INNOECOFOOD)
用于改善非洲农业生态食品营养、可持续生产和营销的生态创新技术(INNOECOFOOD)
- 批准号:
10110792 - 财政年份:2024
- 资助金额:
$ 270万 - 项目类别:
EU-Funded
Novel, Sustainable Composite Stone Heating Eco Radiators
新型、可持续的复合石材加热生态散热器
- 批准号:
10076165 - 财政年份:2023
- 资助金额:
$ 270万 - 项目类别:
Grant for R&D
FMSG: Eco: Off-Grid Construction via Sustainable Compression Curing of Vegetable Oil-Impregnated Sediments
FMSG:生态:通过植物油浸渍沉积物的可持续压缩固化进行离网建设
- 批准号:
2423166 - 财政年份:2023
- 资助金额:
$ 270万 - 项目类别:
Standard Grant
Algal Biomass to Hydrogen: A Circular Approach for Sustainable Hydrogen Production Via Eco-friendly Supercritical Water Technology
藻类生物质制氢:通过环保超临界水技术实现可持续制氢的循环方法
- 批准号:
2890597 - 财政年份:2023
- 资助金额:
$ 270万 - 项目类别:
Studentship
ECO-CBET: A Convergent Approach to the Rational Design of Controllably Degradable Polymers using Sustainable Nanocomposites and Biodegradable-Additives
ECO-CBET:使用可持续纳米复合材料和生物可降解添加剂合理设计可控降解聚合物的收敛方法
- 批准号:
2318652 - 财政年份:2023
- 资助金额:
$ 270万 - 项目类别:
Standard Grant
FMRG: Eco: CAS-Climate: Sustainable Manufacturing Using Living Organisms and Agriculturally Derived Materials
FMRG:生态:CAS-气候:利用活有机体和农业衍生材料的可持续制造
- 批准号:
2229228 - 财政年份:2023
- 资助金额:
$ 270万 - 项目类别:
Standard Grant
FMRG: Eco: CAS-Climate: Sustainable Manufacturing Using Living Organisms and Agriculturally Derived Materials
FMRG:生态:CAS-气候:利用活有机体和农业衍生材料的可持续制造
- 批准号:
2308575 - 财政年份:2023
- 资助金额:
$ 270万 - 项目类别:
Standard Grant