EAGER: Understanding Electrochemical Alloying Reaction of Nanostructured Silicon with Magnesium: Impact of Nanoscale Silicon Processing
EAGER:了解纳米结构硅与镁的电化学合金化反应:纳米硅加工的影响
基本信息
- 批准号:1840672
- 负责人:
- 金额:$ 18.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New forms of energy storage needed for our national prosperity requires the development of new materials and processes. This EArly-concept Grant for Exploratory Research (EAGER) will support fundamental research that will contribute to new insight on processing nanostructured silicon, which may serve as a high performance anode material for magnesium-ion batteries. Magnesium ion batteries have been suggested as a safe and inexpensive alternative to the more conventional lithium ion batteries. This research looks to overcome the fundamental barrier that restricts the storage of magnesium in nanostructured silicon, and study the relationship between the new processing route and the material performance. The surface of conventionally processed nanostructured silicon is covered with native silicon oxide, which restricts the storage of magnesium in silicon. The new processing route investigated here promises to lead to oxide-free nanostructured silicon, making it possible to reversibly store magnesium. The relationship between the size of the synthesized nanostructured silicon, the synthesis parameter, and the storage performance will be determined. Results from this research will open the way to the use of silicon -- the second most abundant element in the earth's crust, in a magnesium battery, which will benefit the US economy and society. In particular, it will lessen the concern of the material shortage in lithium and cobalt, which are currently used in rechargeable batteries.Reversible electrochemical alloying reaction of nanostructured silicon with magnesium remains a challenge. In this project, it is hypothesized that processing of oxide-free nanostructured silicon is the key to successful alloying reaction of silicon with magnesium. To verify this hypothesis, a new in situ processing route to oxide-free nanostructured silicon will be investigated. This process creates the nanostructured material in situ in a magnesium-ion battery cell when the battery is being charged and discharged. The reversible alloying reactions of silicon with magnesium will be directly investigated in the same magnesium-ion battery cell throughout charging and discharging cycles. This processing approach makes it possible to avoid any exposure of the nanostructured silicon to air, thus avoiding the formation of undesirable native silicon oxide surface films that hamper the reaction between silicon and magnesium.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们国家繁荣所需的新形式的能源储存需要开发新材料和新工艺。EARLY概念探索性研究资助(EAGER)将支持基础研究,这将有助于对纳米结构硅加工的新见解,纳米结构硅可作为镁离子电池的高性能阳极材料。镁离子电池已被建议作为更传统的锂离子电池的安全且廉价的替代品。 本研究旨在克服限制镁在纳米结构硅中存储的根本障碍,并研究新工艺路线与材料性能之间的关系。常规处理的纳米结构硅的表面覆盖有原生氧化硅,这限制了镁在硅中的储存。这里研究的新工艺路线有望产生无氧化物的纳米结构硅,使可逆地存储镁成为可能。将确定合成的纳米结构硅的尺寸、合成参数和存储性能之间的关系。这项研究的结果将为硅-地壳中第二丰富的元素-在镁电池中的使用开辟道路,这将有利于美国经济和社会。特别是,它将减轻目前用于可充电电池的锂和钴材料短缺的担忧。纳米结构硅与镁的可逆电化学合金化反应仍然是一个挑战。在该项目中,假设无氧化物纳米结构硅的加工是硅与镁成功合金化反应的关键。为了验证这一假设,将研究一种新的原位无氧化物纳米结构硅的加工路线。当电池充电和放电时,该过程在镁离子电池单元中原位产生纳米结构材料。硅与镁的可逆合金化反应将在同一镁离子电池中直接研究整个充电和放电循环。这种处理方法可以避免纳米结构硅暴露在空气中,从而避免形成阻碍硅和镁之间反应的不希望的天然氧化硅表面膜。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High‐Rate and Long Cycle‐Life Alloy‐Type Magnesium‐Ion Battery Anode Enabled Through (De)magnesiation‐Induced Near‐Room‐Temperature Solid–Liquid Phase Transformation
- DOI:10.1002/aenm.201902086
- 发表时间:2019-10
- 期刊:
- 影响因子:27.8
- 作者:Lin Wang;Samuel S. Welborn;H. Kumar;Manni Li;Zeyu Wang;V. Shenoy;E. Detsi
- 通讯作者:Lin Wang;Samuel S. Welborn;H. Kumar;Manni Li;Zeyu Wang;V. Shenoy;E. Detsi
In situ electrochemical dilatometry study of capacity fading in nanoporous Ge-based Na-ion battery anodes
- DOI:10.1016/j.scriptamat.2019.01.030
- 发表时间:2019-04-15
- 期刊:
- 影响因子:6
- 作者:Li, Manni;Wang, Zeyu;Detsi, Eric
- 通讯作者:Detsi, Eric
Activated alumina as value-added byproduct from the hydrolysis of hierarchical nanoporous aluminum with pure water to generate hydrogen fuel
- DOI:10.1016/j.renene.2020.03.072
- 发表时间:2020-08
- 期刊:
- 影响因子:8.7
- 作者:Timothy Lee;Jintao Fu;Victoria M. Basile;John S. Corsi;Zeyu Wang;E. Detsi
- 通讯作者:Timothy Lee;Jintao Fu;Victoria M. Basile;John S. Corsi;Zeyu Wang;E. Detsi
Perspective—Reversible Magnesium Storage in Silicon: An Ongoing Challenge
- DOI:10.1149/1945-7111/ab736b
- 发表时间:2020-02
- 期刊:
- 影响因子:3.9
- 作者:Dongyang Zhang;Jintao Fu;Zeyu Wang;Lin Wang;John S. Corsi;E. Detsi
- 通讯作者:Dongyang Zhang;Jintao Fu;Zeyu Wang;Lin Wang;John S. Corsi;E. Detsi
Magnesium‐Ion Batteries: High‐Rate and Long Cycle‐Life Alloy‐Type Magnesium‐Ion Battery Anode Enabled Through (De)magnesiation‐Induced Near‐Room‐Temperature Solid–Liquid Phase Transformation (Adv. Energy Mater. 45/2019)
- DOI:10.1002/aenm.201970180
- 发表时间:2019-12
- 期刊:
- 影响因子:27.8
- 作者:Lin Wang;Samuel S. Welborn;H. Kumar;Manni Li;Zeyu Wang;V. Shenoy;E. Detsi
- 通讯作者:Lin Wang;Samuel S. Welborn;H. Kumar;Manni Li;Zeyu Wang;V. Shenoy;E. Detsi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Detsi其他文献
Isolating intermediate Mgsub11/subCusub6/subAlsub12/sub phase in ternary Mg-Cu-Al alloy by electrolytic dealloying
通过电解脱合金法分离三元镁铜铝合金中的中间相 MgCu₆Al₁₂
- DOI:
10.1016/j.scriptamat.2022.115039 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:5.600
- 作者:
Timothy Lee;Jintao Fu;Lin Wang;Jiaxin Liu;Samuel S. Welborn;Johanna Nelson Weker;Eric Detsi - 通讯作者:
Eric Detsi
Sacrificial element recovery through the Kirkendall effect during electrolytic dealloying
- DOI:
10.1557/s43577-025-00892-0 - 发表时间:
2025-04-23 - 期刊:
- 影响因子:4.900
- 作者:
Eric Detsi;Jeff Th. M. DeHosson - 通讯作者:
Jeff Th. M. DeHosson
Tri-layer nanoporous silver | silver | silver by etching without sacrificing materials through the Kirkendall effect
通过柯肯达尔效应在不牺牲材料的情况下蚀刻得到的三层纳米多孔银|银|银
- DOI:
10.1016/j.actamat.2024.120685 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:9.300
- 作者:
Alexander K. Ng;Hyeongjun Koh;Eric Detsi - 通讯作者:
Eric Detsi
Tri-layer nanoporous silver | gold | silver by etching without sacrificing materials through the Kirkendall effect
- DOI:
10.1016/j.actamat.2024.120574 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Alexander K. Ng;Hyeongjun Koh;Eric Detsi - 通讯作者:
Eric Detsi
Eric Detsi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Detsi', 18)}}的其他基金
I-Corps: Two-step water splitting method using an electrochemical Zinc/Zinc Oxide cycle to produce hydrogen
I-Corps:使用电化学锌/氧化锌循环生产氢气的两步水分解方法
- 批准号:
2405325 - 财政年份:2024
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
CAREER: Understanding and Overcoming the Fundamental Barriers to the Direct Reduction of Aluminum Hydroxide to Aluminum Metal
职业:了解并克服氢氧化铝直接还原为金属铝的基本障碍
- 批准号:
2047851 - 财政年份:2021
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
FMRG: Eco: Sustainable Route to 3D Solid-State Sodium-ion Battery by Direct Ink Writing and Capillary Rise Infiltration
FMRG:Eco:通过直接墨水写入和毛细管上升渗透实现 3D 固态钠离子电池的可持续途径
- 批准号:
2134715 - 财政年份:2021
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
- 批准号:
MR/Y034244/1 - 财政年份:2025
- 资助金额:
$ 18.09万 - 项目类别:
Fellowship
CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles
职业:从第一原理了解熔盐中的电化学金属萃取
- 批准号:
2340765 - 财政年份:2024
- 资助金额:
$ 18.09万 - 项目类别:
Continuing Grant
In situ TEM for understanding the electrochemical performance of iridium based catalysts
原位 TEM 了解铱基催化剂的电化学性能
- 批准号:
2905956 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
Studentship
Atomistic understanding of the electrode potential effect on the electrochemical processes by the newly developed constant electrode potential QM/MM method
通过新开发的恒定电极电位 QM/MM 方法从原子角度理解电极电位对电化学过程的影响
- 批准号:
22KJ1854 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Designing porous carbon electrodes for high performance LIBs based on understanding electrochemical reactions in the pores
基于对孔内电化学反应的理解,设计高性能锂离子电池的多孔碳电极
- 批准号:
23H02048 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Understanding electrochemical hydrogenation reactions over post-transition metal electrodes: the role of incidental mediators and metastable phases
了解后过渡金属电极上的电化学氢化反应:偶然介体和亚稳态相的作用
- 批准号:
2301381 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
Understanding the Structural Transformations of Aluminum Foil Anodes during Electrochemical De(alloying) for Sustainable Lithium-ion Batteries
了解可持续锂离子电池电化学脱(合金)过程中铝箔阳极的结构转变
- 批准号:
2321486 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
Understanding dynamic interfaces in electrochemical systems
了解电化学系统中的动态界面
- 批准号:
FT220100666 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
ARC Future Fellowships
An Electrochemical Approach to Understanding Coral Bleaching
了解珊瑚白化的电化学方法
- 批准号:
2894423 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
Studentship
Understanding and controlling complex modified electrochemical interfaces using novel measurements and model systems
使用新颖的测量和模型系统理解和控制复杂的改性电化学界面
- 批准号:
RGPIN-2022-04419 - 财政年份:2022
- 资助金额:
$ 18.09万 - 项目类别:
Discovery Grants Program - Individual