EAGER: Coupling of Gas-Liquid Plasma Chemical Reactors with Bioengineered Microbes
EAGER:气液等离子体化学反应器与生物工程微生物的耦合
基本信息
- 批准号:2135468
- 负责人:
- 金额:$ 14.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-thermal plasmas are low-temperature, atmospheric-pressure ionized gases that are generated by high-voltage electric discharges. When these plasmas are in contact with liquid water, free radical species are formed that effectively decompose toxic compounds or transform organic waste into value-added products. While non-thermal plasmas alone can be used to completely degrade target pollutants into mineralized products, the total electrical power required may make the process economically nonviable. Biological treatment processes, on the other hand, can completely transform some chemical waste species with greatly reduced power demands. However, these processes are limited to biodegradable compounds and may require lengthy processing times. Previous work by this research team demonstrated that the sequential combination of using a plasma reactor to initiate the breakdown of waste compounds followed by a bioreactor to complete the process can lead to significant energy savings. It was also found, however, that the slower bioreactor dynamics results in a mismatch in time scales that ultimately led to very large reactor systems. To overcome this problem, in this study microbial cells will be genetically engineered to: a) survive in the liquid water contacting the non-thermal plasma, and b) increase enzyme production so that the rates of the biological reaction pathways compare to those of the plasma. This matching of the two process time scales will make possible the design and operation of integrated, compact, and energy efficient plasma-bioreactor systems for degrading hazardous and toxic compounds from wastewater streams or to produce useful compounds from waste materials. Fundamental knowledge on coupling a non-biological (abiotic) system such as the non-thermal plasma reactor with the cellular metabolism of a bacterium also will be generated by this work.This project seeks to develop non-thermal plasma gas-liquid bioreactors, research that couples plasma chemistry and chemical reaction engineering with bioengineering. Plasma reactions occur over time scales of less than 1 second while conventional bioreactors often operate on time scales of hours to days to weeks. These large differences in time scales suggest that it may be possible to attain greater efficiency and reaction process synergy by coupling non-thermal plasma to bioreactors containing microbes bioengineered for both plasma resistance and specific metabolic tasks. The overall goal of the proposed work is to test the hypothesis that microbes resistant to the plasma-produced oxidizing compounds can be genetically engineered to perform other useful biochemical transformations within the reactive environment of gas-liquid non-thermal plasma reactors. Plasma resistant E. coli will be engineered to enhance their inherent capacity to metabolize carboxylic acids, specifically glycolic, formic and oxalic acids. Likewise, the plasma reactor will be engineered to promote effective contact between the cells and the gas-liquid plasma environment. The specific hypotheses of this proposal are: 1) that the newly developed cells will be able to function while exposed to the plasma, and 2) the incorporation of these cells in the plasma reactor will lead to a faster overall mineralization of a target organic compound. The first practical applications to be investigated in this work involve treatment of toxic and difficult to biodegrade organic compounds. The demonstration that microbes can be created to perform useful chemical transformation within the highly oxidizing plasma environment will constitute a novel example of the effective use of electrical energy in chemical processing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非热等离子体是由高压放电产生的低温、大气压电离气体。当这些等离子体与液态水接触时,会形成自由基物质,有效地分解有毒化合物或将有机废物转化为增值产品。虽然单独使用非热等离子体可以将目标污染物完全降解为矿化产物,但所需的总电力可能使该过程在经济上不可行。另一方面,生物处理过程可以完全转化一些化学废物,大大降低电力需求。然而,这些工艺仅限于可生物降解的化合物,并且可能需要较长的加工时间。该研究小组先前的工作表明,使用等离子体反应器启动废物化合物的分解,然后使用生物反应器完成该过程的顺序组合可以显著节省能源。然而,还发现较慢的生物反应器动力学导致时间尺度的不匹配,最终导致非常大的反应器系统。为了克服这个问题,在这项研究中,微生物细胞将被基因工程改造为:a)在接触非热等离子体的液态水中生存,以及B)增加酶的产生,以便生物反应途径的速率与血浆的速率相比较。这两个过程的时间尺度的匹配将使得一体化的,紧凑的,和节能的等离子体生物反应器系统的设计和操作,用于降解有害和有毒的化合物从废水流或生产有用的化合物从废料成为可能。通过本课题的研究,还可以获得将低温等离子体反应器与细菌的细胞代谢等非生物系统相结合的基础知识。本课题的目的是开发低温等离子体气液生物反应器,将等离子体化学和化学反应工程学与生物工程学相结合。血浆反应在小于1秒的时间尺度上发生,而常规生物反应器通常在数小时至数天至数周的时间尺度上操作。这些时间尺度上的巨大差异表明,通过将非热等离子体与含有针对等离子体抗性和特定代谢任务进行生物工程改造的微生物的生物反应器偶联,可以获得更高的效率和反应过程协同作用。拟议工作的总体目标是测试这样一种假设,即对等离子体产生的氧化化合物具有抗性的微生物可以通过基因工程在气液非热等离子体反应器的反应环境中进行其他有用的生化转化。耐血浆E.大肠杆菌将被改造以增强其固有的代谢羧酸的能力,特别是乙醇酸、甲酸和草酸。同样,等离子体反应器将被设计为促进细胞与气液等离子体环境之间的有效接触。该提议的具体假设是:1)新开发的细胞将能够在暴露于等离子体时起作用,以及2)将这些细胞并入等离子体反应器中将导致目标有机化合物的更快的整体矿化。在这项工作中要研究的第一个实际应用涉及有毒和难以生物降解的有机化合物的处理。在高氧化性等离子体环境中创造微生物进行有用的化学转化的示范将构成化学加工中有效利用电能的新例子。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Locke其他文献
Reconsidering the origin(s) of Mahayana Buddhism in the post-Linguistic Turn era
后语言转向时代重新思考大乘佛教的起源
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Klaus-Dieter Weltmann;Juergen F. Kolb;Marcin Holub;Dirk Uhrlandt;Milan Simek;Kostya (Ken) Ostrikov;Satoshi Hamaguchi;Uros Cvelbar;Mirko Cernak;Bruce Locke;Alexander Fridman;Pietro Favia;Kurt Becker;Masahiro Shimoda - 通讯作者:
Masahiro Shimoda
Bruce Locke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Locke', 18)}}的其他基金
SusChEM: Chemical Reaction Engineering for Sustainable Production of Nitrogen Fertilizer and Hydrogen Peroxide by Non Thermal Plasma
SusChEM:非热等离子体可持续生产氮肥和过氧化氢的化学反应工程
- 批准号:
1702166 - 财政年份:2017
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
I-Corps: Green chemical route to the small scale production of hydrogen peroxide
I-Corps:小规模生产过氧化氢的绿色化学路线
- 批准号:
1402248 - 财政年份:2014
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
Reaction Processes in Organic Droplet Spray Plasma Reactors
有机液滴喷雾等离子体反应器中的反应过程
- 批准号:
1236225 - 财政年份:2012
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
Water Spray in Atmospheric Pressure Electrical Discharge Plasma
大气压放电等离子体中的水喷雾
- 批准号:
0932481 - 财政年份:2009
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
SGER: THE EFFECTS OF TEMPERATURE AND CONDUCTIVITY ON AQUEOUS PHASE ELECTRICAL DISCHARGE
SGER:温度和电导率对水相放电的影响
- 批准号:
0839984 - 财政年份:2008
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
Collaborative Research: Are Muscle Fibers Just the Right Size?
合作研究:肌肉纤维的大小合适吗?
- 批准号:
0718499 - 财政年份:2007
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
CONFERENCE SUPPORT FOR THE 4TH INTERNATIONAL SYMPOSIUM ON NON THERMAL PLASMA (May 10-14, 2004)
第四届非热等离子体国际研讨会的会议支持(2004年5月10-14日)
- 批准号:
0352289 - 财政年份:2004
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Muscle fiber size as a determinant of metabolic design
合作研究:肌纤维大小作为代谢设计的决定因素
- 批准号:
0315883 - 财政年份:2003
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
相似国自然基金
基于外泌体TRPV4-Nox4 coupling途径探讨缺氧微环境调控鼻咽癌转移侵袭和血管新生的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Coupling transmission of heat-gas-moisture in accelerating carbonation for modification of recycled aggregates and CO2 sequestration
热-气-湿耦合传输加速再生骨料碳化改性和 CO2 封存
- 批准号:
24K17330 - 财政年份:2024
- 资助金额:
$ 14.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: GOALI: Explicating the gas-surface coupled reaction in oxidative coupling of methane via reaction kinetics, operando spectroscopy, photoionization spectrometry
渴望:目标:通过反应动力学、操作光谱、光电离光谱法解释甲烷氧化偶联中的气体-表面偶联反应
- 批准号:
2327344 - 财政年份:2023
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
CAREER: Gas-Phase Molecular Polaritons: A New Platform for Chemistry under Strong Light-Matter Coupling
职业:气相分子极化子:强光-物质耦合下的化学新平台
- 批准号:
2238865 - 财政年份:2023
- 资助金额:
$ 14.98万 - 项目类别:
Continuing Grant
Study on potential energy surface for gas-phase vibrational strong coupling by IR spectroscopy and cavity-QED theory
红外光谱与腔QED理论研究气相振动强耦合势能面
- 批准号:
21H01879 - 财政年份:2021
- 资助金额:
$ 14.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Thermogravimetry-Infrared gas chromatography-mass spectrometry coupling (TGA-IR-GC-MS)
热重-红外气相色谱-质谱联用 (TGA-IR-GC-MS)
- 批准号:
464532350 - 财政年份:2021
- 资助金额:
$ 14.98万 - 项目类别:
Major Research Instrumentation
SitS NSF-UKRI: Collaborative Research: Dynamic Coupling of Soil Structure and Gas Fluxes Measured with Distributed Sensor Systems: Implications for Carbon Modeling
SitS NSF-UKRI:合作研究:用分布式传感器系统测量的土壤结构和气体通量的动态耦合:对碳建模的影响
- 批准号:
1935551 - 财政年份:2020
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
Dynamic coupling of soil structure and gas fluxes measured with distributed sensor systems: implications for carbon modeling
土壤结构与分布式传感器系统测量的气体通量的动态耦合:对碳建模的影响
- 批准号:
NE/T010487/1 - 财政年份:2020
- 资助金额:
$ 14.98万 - 项目类别:
Research Grant
Coupling Microbial Electrolysis Cells with Anaerobic Membrane Bioreactors for the Mitigation of Membrane Fouling and Hydrogen Gas Production
将微生物电解池与厌氧膜生物反应器耦合以减轻膜污染和氢气产生
- 批准号:
542847-2019 - 财政年份:2019
- 资助金额:
$ 14.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Design and Characterization of Two-Dimensional Electron Gas with Strong Spin-Orbit Coupling Based on Transition Metal Oxides
基于过渡金属氧化物的强自旋轨道耦合二维电子气的设计与表征
- 批准号:
1905833 - 财政年份:2019
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
Thermoacoustic coupling in liquid-fueled dry low emission gas turbine combustors for electrical power generation
用于发电的液体燃料干式低排放燃气轮机燃烧室中的热声耦合
- 批准号:
515554-2017 - 财政年份:2018
- 资助金额:
$ 14.98万 - 项目类别:
Collaborative Research and Development Grants