NSF Convergence Accelerator Track E: Reconfiguring Urban Shorelines for Resilience: Convergence Research Meshing Ecology, Engineering and Architecture
NSF 融合加速器轨道 E:重新配置城市海岸线以增强韧性:融合研究融合生态学、工程和建筑
基本信息
- 批准号:2137745
- 负责人:
- 金额:$ 74.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract - Reconfiguring urban shorelines for resilience: convergence research meshing ecology, engineering and architecture.This project addresses a significant national infrastructure need, the replacement of failing shoreline protection in urban areas. It will produce designs that increase protection, benefit social communities, and maximize the development of shoreline biological communities and the services they provide, including enhancing fisheries. The blue economy includes traditional marine industries, such as fisheries, mining, and trade, as well as emerging industries like offshore renewable energy, and the ecosystem services provided by natural communities, such as carbon sequestration and coastal protection. Urbanized coastal zones drive much of the blue economy, but are increasingly vulnerable to damage from waves, flooding, storms, and sea level rise associated with continued climate change. Hardened or armored shorelines, such as bulkheads and sea walls, have been the major tool for protecting shorelines from erosion and storms, particularly in urban settings. But, current infrastructure is failing and must be replaced. It is failing physically and functionally as it cannot adapt to changing sea conditions and is deteriorating due to age in many locations. These structures neither support diverse ecological communities nor provides a place for humans to experience and understand the valuable nature of the urban coastal ecosystem. This failure is not only a cause of the impoverishment of urban life, but a contributing factor to the lack of resilience in cities. Therefore, there is a need for innovating a new generation of replacements for existing hardened shorelines that will protect the urban edge, while supporting biodiversity and expanding human experience at the coastal interface. This project will design a digital prototype that is not only a solution to an urgent problem, but is also scalable and transportable to other urbanized shores within the US and elsewhere. Solving problems that are complex and socially relevant requires expertise in a wide range of fields, including fields that do not normally collaborate. This project involves a team from fields that rarely work together including ecologists, engineers, architects, and social scientists. This project will also engage local stakeholders, including underserved communities, to provide education about shoreline issues, science and design evaluation tools, and include their feedback in development of the model. This project will include engagement with industry, agencies, and regulatory bodies, as well as citizen groups and students. To integrate disciplinary knowledge of natural sciences, social sciences, engineering and architecture, with local knowledge, the team will conduct workshop sessions with stakeholders, including students. Interested students will be encouraged to engage as “citizen-scientist/citizen-designers” for the duration of the project. The research team aims to advance knowledge in 3 ways: 1) within and among disciplines, 2) among citizens, and 3) between experts and citizens. Coastal zones are an essential element of the blue economy. They represent the most urbanized and economically productive areas, provide habitat and nursery areas for marine biodiversity, and support important fisheries and aquaculture. However, sea level rise and increased risk of storm surge are threatening the people and economic value of urban coastal areas. Shoreline hardening has been the major tool for protecting urban areas, but existing structures are failing and need replacement. They have depauperate ecological communities, reduced nursery areas for fish, are ineffective during storm surges, and limit human interaction with the waterfront. Therefore, there is urgent need for innovative replacements to protect the urban edge, support biodiversity, and elevate human experience. The goal of this project is to design a new type of infrastructure to better protect urban shorelines while simultaneously enhancing local biological communities and human engagement with the coastline. This project will use a convergence, transdisciplinary approach with use of new materials, complex architectural morphologies, and advanced hydrological computer analyses to design new multi-scalar structures and spaces for the urban edge. It will: develop a transdisciplinary framework of structural, material, biotic, economic and social parameters for building new infrastructure to enhance biological and social communities, while advancing protection from sea-level rise and storm surge; use architectural design and engineering modeling to propose new approaches to constructed coastal reinforcements that provide protection for cities and harbors from storm surges and climate change while maximizing development of biotic communities and the services to people. It will be developed as a digital prototype and will engage local stakeholders, including underserved communities, in design activities that will integrate education about shoreline issues, science and design evaluation tools, and will include their feedback. These outcomes will be used to develop guidelines and design principles to improve coastal infrastructure. This project will create pragmatic scenarios on which to base decision-making for climate-resilient shoreline structures that have greater ecological and social value while upgrading urgently needed mechanical function. The prototype design will deliver a novel model capable of increasing well-being for people, ocean edges, and shoreline species, boost disaster risk reduction, and increase ecosystem and urban services. It will represent a benchmark approach for future research on the development and application of shoreline infrastructure. The team will link fields that rarely interact (natural and social sciences, engineering, and architectural design), with local users, stakeholders, regulatory agencies, and industry through a convergence framework. This project will help advance knowledge, collaboration, and education in 3 ways: within and among previously isolated disciplines, among citizen groups, and between experts and citizens. Local users, stakeholders, regulatory agencies and industry will be important components of this interactive team. This project will serve as a platform for developing and implementing this approach through collaboration with the team’s convergence network, curriculum integration, strategic network expansion, and pursuit of new allies. Network partners will be brought directly into the processes of public space and infrastructure design. This project will have an important outreach to high schools and will engage citizens and students from underserved communities and members of underrepresented groups. Project progress, process, and results will be shared to the wider public through a project website, active engagement through various social media and traditional scientific conference presentations and publications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dianna Padilla其他文献
Dianna Padilla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dianna Padilla', 18)}}的其他基金
RCN: Buildig an Organismal Systems-type Modeling Network - OSyM
RCN:构建有机系统类型建模网络 - OSyM
- 批准号:
1754949 - 财政年份:2018
- 资助金额:
$ 74.97万 - 项目类别:
Continuing Grant
A Workshop to address the Grand Challenge: How Organisms Walk the Tightrope Between Stability and Change?
应对重大挑战的研讨会:生物体如何在稳定与变化之间走钢丝?
- 批准号:
1243801 - 财政年份:2012
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
DISSERTATION RESEARCH: Incorporating Metagenomics into Experimental Community Ecology: Tests with the Pitcher Plant Model System
论文研究:将宏基因组学纳入实验群落生态学:用猪笼草模型系统进行测试
- 批准号:
0909830 - 财政年份:2009
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
Collaborative Research: Phenotypic Plasticity in Feeding: Ontogenetic Solutions to Scaling Limitations
合作研究:喂养中的表型可塑性:规模限制的个体发生解决方案
- 批准号:
0920032 - 财政年份:2009
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
Complex Life-histories in Marine Benthic Invertebrates: Graduate Student Support
海洋底栖无脊椎动物的复杂生活史:研究生支持
- 批准号:
0450894 - 财政年份:2004
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
WORKSHOP: Increasing Minority Involvement In Integrative and Comparative Biology, to be held at the annual meeting of SICB, Atlanta, Georgia, January 4-8, 2000
研讨会:增加少数人对综合和比较生物学的参与,将于 2000 年 1 月 4-8 日在佐治亚州亚特兰大举行的 SICB 年会上举行
- 批准号:
9983235 - 财政年份:2000
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
MRI: Acquisition of Instrumentation for Research and Training in Functional Ecology
MRI:购买用于功能生态学研究和培训的仪器
- 批准号:
9977377 - 财政年份:1999
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
Functional and Evolutionary Ecology of a Phenotypically Plastic Feeding Morphology
表型塑料摄食形态的功能和进化生态学
- 批准号:
9974594 - 财政年份:1999
- 资助金额:
$ 74.97万 - 项目类别:
Continuing Grant
Functional and Evolutionary Analysis of an Inducible, Phenotypically Plastic Feeding Morphology
诱导型、表型可塑性摄食形态的功能和进化分析
- 批准号:
9317293 - 财政年份:1994
- 资助金额:
$ 74.97万 - 项目类别:
Continuing Grant
REU: Radular Variability in the Herbivorous Gastropods Lacuna
REU:草食性腹足动物的径向变异性缺陷
- 批准号:
9009070 - 财政年份:1990
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
- 批准号:
2344174 - 财政年份:2024
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 74.97万 - 项目类别:
Standard Grant














{{item.name}}会员




