Quantum Subgroups of the Low Rank Lie Algebras
低阶李代数的量子子群
基本信息
- 批准号:2137775
- 负责人:
- 金额:$ 11.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The notion of symmetries plays a key role in our understanding of various physical theories. A basic example can be seen in the undergraduate classroom, where symmetries of a system are used to solve difficult flux integrals. Classically the symmetries of a physical system are described by a mathematical object known as a group. One of the major advances of modern physics has been the revelation that groups are not sufficient to capture the symmetries of a quantum system. It is now understood that the symmetries of a quantum system can be captured on its algebra of observables (a von Neumann algebra). The mathematical tool which describes these generalized symmetries is known as a tensor category. This award will support the proposer's plans to use the theory of tensor categories to answer several long-standing questions in mathematical physics and von Neumann algebras. The award also will contribute to US workforce development through the training of undergraduate students via undergraduate research projects.This project has two main goals. The first is to classify type II quantum subgroups for many of the low rank Lie algebras. This question is motivated by mathematical physics, where it is equivalent to extending the Wess-Zumino-Witten conformal field theories. This work builds on recent progress made by Terry Gannon. The second is to construct and classify many new examples of bi-finite bimodules of von Neumann algebras. This question is inspired by the classification of small index subfactors. As in the subfactor classification, PI will uncover exotic examples.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称性的概念在我们理解各种物理理论中起着关键作用。一个基本的例子可以在本科课堂上看到,在那里系统的对称性被用来解决困难的通量积分。传统上,物理系统的对称性是用一个称为群的数学对象来描述的。现代物理学的一个重大进展是揭示了群不足以捕捉量子系统的对称性。现在可以理解,量子系统的对称性可以在它的可观测代数(冯诺依曼代数)上捕获。描述这些广义对称性的数学工具被称为张量范畴。该奖项将支持提议者计划使用张量范畴理论来回答数学物理和冯诺依曼代数中的几个长期存在的问题。该奖项还将通过本科生研究项目培训本科生,为美国劳动力发展做出贡献。第一个是对许多低秩李代数的II型量子子群进行分类。这个问题的动机是数学物理,它相当于推广Wess-Zumino-维滕共形场论。这项工作建立在特里·甘农最近取得的进展的基础上。二是构造和分类了von Neumann代数的双有限双模的许多新例子。这个问题的灵感来自于小指数子因子的分类。正如在子因素分类中一样,PI将揭示异国情调的例子。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Auto-equivalences of the modular tensor categories of type A, B, C and G
A、B、C 和 G 型模张量类别的自等价
- DOI:10.1016/j.aim.2022.108364
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Edie-Michell, Cain
- 通讯作者:Edie-Michell, Cain
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cain Edie-Michell其他文献
Classification of pivotal tensor categories with fusion rules related to emSO/em(4)
与 emSO/em(4)相关融合规则的关键张量范畴的分类
- DOI:
10.1016/j.jalgebra.2022.12.003 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:0.800
- 作者:
Daniel Copeland;Cain Edie-Michell - 通讯作者:
Cain Edie-Michell
Uniqueness Theorems for Steinberg Algebras
- DOI:
10.1007/s10468-015-9522-2 - 发表时间:
2015-02-06 - 期刊:
- 影响因子:0.600
- 作者:
Lisa Orloff Clark;Cain Edie-Michell - 通讯作者:
Cain Edie-Michell
Auto-equivalences of the modular tensor categories of type emA/em, emB/em, emC/em and emG/em
emA/em、emB/em、emC/em 和 emG/em 型模张量范畴的自等价
- DOI:
10.1016/j.aim.2022.108364 - 发表时间:
2022-06-25 - 期刊:
- 影响因子:1.500
- 作者:
Cain Edie-Michell - 通讯作者:
Cain Edie-Michell
Cain Edie-Michell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cain Edie-Michell', 18)}}的其他基金
Higher Representation Theory and Subfactors
更高表示理论和子因素
- 批准号:
2400089 - 财政年份:2024
- 资助金额:
$ 11.24万 - 项目类别:
Standard Grant
Quantum Subgroups of the Low Rank Lie Algebras
低阶李代数的量子子群
- 批准号:
2245935 - 财政年份:2022
- 资助金额:
$ 11.24万 - 项目类别:
Standard Grant
Quantum Subgroups of the Low Rank Lie Algebras
低阶李代数的量子子群
- 批准号:
2055105 - 财政年份:2021
- 资助金额:
$ 11.24万 - 项目类别:
Standard Grant
相似海外基金
The Apocalypse of QAnon: What is the relationship between prophecy and violence in the subgroups of the Q Movement?
QAnon 的启示录:Q 运动各分支中的预言和暴力之间有何关系?
- 批准号:
2903652 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Studentship
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
- 批准号:
10734357 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Complex WTC Exposures Impacting Persistent Large and Small Airflow Limitation and Vulnerable Subgroups in the WTC Survivor Population
复杂的世贸中心暴露影响了世贸中心幸存者群体中持续的大、小气流限制和弱势群体
- 批准号:
10749125 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Dissecting functional subgroups and closed-loop circuits between the pedunculopontine nucleus and the basal ganglia
解剖桥脚核和基底神经节之间的功能亚组和闭环回路
- 批准号:
10677467 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Net Clinical Benefit and Cost-Effectiveness of Indefinite Anticoagulation Among Clinically Relevant Subgroups of Patients with First Unprovoked Venous Thromboembolism
首次无端静脉血栓栓塞临床相关亚组患者无限期抗凝的净临床效益和成本效益
- 批准号:
493128 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Mapping the Cerebellar Origins of Medulloblastoma Subgroups
绘制髓母细胞瘤亚群的小脑起源图
- 批准号:
10587809 - 财政年份:2023
- 资助金额:
$ 11.24万 - 项目类别:
Quantum Subgroups of the Low Rank Lie Algebras
低阶李代数的量子子群
- 批准号:
2245935 - 财政年份:2022
- 资助金额:
$ 11.24万 - 项目类别:
Standard Grant
Examining the Integrative Effects of Adolescent, Parent, Provider, and Practice Level Factors on Adolescents' HPV Vaccine Uptake across Six Asian American Subgroups
检查青少年、家长、提供者和实践水平因素对六个亚裔美国人亚群体青少年 HPV 疫苗接种的综合影响
- 批准号:
10371334 - 财政年份:2022
- 资助金额:
$ 11.24万 - 项目类别:
The impact of clinical interventions for sepsis in routine care and among detailed patient subgroups: A novel approach for causal effect estimation in electronic health record data
脓毒症临床干预措施对常规护理和详细患者亚组的影响:电子健康记录数据因果效应估计的新方法
- 批准号:
10686093 - 财政年份:2022
- 资助金额:
$ 11.24万 - 项目类别:
Multicolor cell imaging analysis of lipid droplet subgroups using functional carbon dots
使用功能碳点对脂滴亚群进行多色细胞成像分析
- 批准号:
22F22408 - 财政年份:2022
- 资助金额:
$ 11.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




