An Artificial Intelligence Method for Auto-Compressed Sensing and Blind Deconvolution in Magnetic Resonance Imaging Data of Shoulder Muscle Metabolism
肩部肌肉代谢磁共振成像数据自动压缩感知和盲解卷积的人工智能方法
基本信息
- 批准号:2138142
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is made as part of the FY 2021 Mathematical and Physical Sciences Ascending Postdoctoral Research Fellowships, MPS-Ascend Program. Talon Johnson is awarded this fellowship to conduct a program of research and education in the mathematical sciences, including applications to other disciplines, at University of Texas Southwestern Medical Center under the mentorship of the sponsoring scientists Jimin Ren and Anke Henning. This is a research project aimed at development of computational image reconstruction methods for Magnetic Resonance Imaging (MRI). Johnson plans to design compressed sensing methods that are capable of reconstructing image data from MRI measurements that have been affected by the subject's motion, such as respiratory-related motion in MRI imaging of shoulder muscle metabolism. Along with this research, Johnson will be involved in activities to broaden participation of underrepresented minorities in mathematical sciences through the recruitment of students from the University of Texas at Arlington and a collaboration with the Atlanta University Center Data Science Initiative.This research is aimed at improving image precision and quality by completing three research objectives: 1) Develop and refine the methodology for reconstruction of compressed sensing data for blurred MRI imaging using l1-l2 minimization scheme, based on l1-magic for compressed sensing and l2 minimization for deconvolution of a fixed kernel function, 2) develop an AI method for auto-recognition of any unknown kernel functions from blurred compressed MRI data sets to achieve simultaneous compressed sensing - blind deblurring of any simulated MRI data, 3) refine the AI method for auto-compressed sensing and blind deblurring of experimental data in MRI imaging of shoulder muscle metabolism and improve imaging precision.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是作为2021财年数学和物理科学上升博士后研究奖学金,MPS-Ascend计划的一部分。Talon约翰逊被授予该奖学金,在赞助科学家Jimin Ren和Anke Henning的指导下,在德克萨斯大学西南医学中心进行数学科学的研究和教育计划,包括其他学科的应用。这是一个旨在开发磁共振成像(MRI)的计算图像重建方法的研究项目。 约翰逊计划设计压缩感知方法,能够从受受试者运动影响的MRI测量中重建图像数据,例如肩部肌肉代谢MRI成像中的运动相关运动。 沿着这项研究,约翰逊将参与活动,通过招募德克萨斯大学阿灵顿分校的学生,并与亚特兰大大学中心数据科学计划合作,扩大代表性不足的少数民族在数学科学领域的参与。这项研究旨在通过完成三个研究目标来提高图像精度和质量:1)基于用于压缩感测的l1-magic和用于固定核函数的去卷积的l2最小化,开发和改进用于使用l1-l2最小化方案重建用于模糊MRI成像的压缩感测数据的方法,2)开发用于从模糊压缩MRI数据集中自动识别任何未知核函数的AI方法,以实现任何模拟MRI数据的同时压缩感知-盲去模糊,3)完善自动驾驶的人工智能方法,压缩传感和盲去模糊的实验数据在MRI成像的肩部肌肉代谢和提高成像精度。该奖项反映了NSF的基金会的使命是履行其法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Talon Johnson其他文献
Talon Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
- 批准号:
486956 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Operating Grants
A novel Artificial Intelligence Method for inferencing impaired cognition trajectories from MRI data in patients with Alzheimer's dementia
一种新的人工智能方法,用于从阿尔茨海默氏痴呆症患者的 MRI 数据推断受损的认知轨迹
- 批准号:
2888204 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
A new method to discover patients with obstructive sleep apnea using artificial intelligence and 2D and 3D images in addition to several complications
一种利用人工智能、2D 和 3D 图像发现阻塞性睡眠呼吸暂停患者的新方法,此外还存在多种并发症
- 批准号:
23K07638 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a novel evaluation method for reproductive function by the application of artificial intelligence in ultrasound imaging of bovine ovaries
人工智能在牛卵巢超声成像中应用的生殖功能评价新方法的建立
- 批准号:
23H02389 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a new diagnostic method for uveitis using artificial intelligence and omics analysis
利用人工智能和组学分析开发葡萄膜炎新诊断方法
- 批准号:
22K09840 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Artificial intelligence assisted Method, Optimizing the Prediction of Patient Outcomes among Long COVID-19 Patients.
人工智能辅助方法,优化长期 COVID-19 患者的患者结果预测。
- 批准号:
473331 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Operating Grants
Development of new method for differentiating benign and malignant breast lesions using synthetic MRI and artificial intelligence
利用合成 MRI 和人工智能开发区分乳腺良恶性病变的新方法
- 批准号:
22K07797 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of a swallowing function evaluation method using artificial intelligence that learns visualized medical practices and functional assessments
利用人工智能构建吞咽功能评估方法,学习可视化医疗实践和功能评估
- 批准号:
21K21141 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Establishment of a new method for diagnosing the depth of gallbladder cancer by intraoperative imaging using artificial intelligence
建立术中人工智能成像诊断胆囊癌深度的新方法
- 批准号:
21K07154 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of the Dermatoscope for the oral cavity and establish of the new diagnostic method of oral mucosa disease using the artificial intelligence technology
开发口腔皮肤镜并利用人工智能技术建立口腔粘膜疾病诊断新方法
- 批准号:
21K10052 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)