ERI: Thermal Assisted Plasmon-Plasmon interaction for active control of Electron Density Waves at Metal Semiconductor Interfaces - A Roadmap to Novel All-Optical Devices

ERI:热辅助等离子体激元-等离子体激元相互作用,用于主动控制金属半导体界面处的电子密度波 - 新型全光器件的路线图

基本信息

  • 批准号:
    2138198
  • 负责人:
  • 金额:
    $ 16.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-15 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

The present ‘information age’ demands for the capability to transfer and process huge amount of data relatively in short span of time. In applications from health care, cyber security, banking, communications, defense and space exploration, ultra-fast data transfer is accomplished by encoding the data on photons. Whereas the need for faster data processing in fueled the innovations and advancements in microprocessor technology with progression towards smaller, ultrafast, and low-power electronics. Despite continuous progression aiming at developing efficient electronic devices; saturation in the microprocessor clock speed at about 5GHz has been observed over the past few years. This can be attributed to the losses associated with electronic interconnects and heat dissipation. All-optical analogues are increasingly becoming an attractive alternative to overcome the limitations associated with electronics. However, implementation of photonic processing device needs efficient mechanism to achieve photon-to-photon interactions at micro and nanoscale scale sizes. Here we propose a new data processing element, an all-optical switch, with potential to serve as an optical analogue of electronic devices with high data rates, while concurrently enabling device sizes that are considerably smaller than traditional photonic elements. A significant impact of this work will be to open avenues for the undergraduate students, including underrepresented groups, disabled veterans and low-income populous in the Alabama black belt region to participate in the cutting-edge research activities in the field of semiconductor photonics and computational optics, implementing a new teaching methodology and pursuing a broader outreach by engaging high school children and local community with fascinating topics in optics.This proposal seeks to develop a new all-optical plasmonic switch, referred to as Thermal Assisted All Plasmonic Switch with operation based on thermo-opto-electronic control of propagating surface plasmon modes at metal-doped semiconductor interfaces by the localized surface plasmon modes excited at the plasmonic structures (or particles). Furthermore, a synergy between the analytical and computational approaches will be pursued to uncover the extreme light matter interactions, kinetic and thermal mechanisms facilitating the localized surface plasmon resonances and surface plasmon polaritons interactions with largely inhomogeneous and rapidly changing local dielectric environments of the Metal-Semiconductor interfaces. The gained understanding will be applied to design and test numerical prototypes of high-performance photonic elements such as all-optical switches, that can potentially provide high data rates at the nanoscopic and microscopic length scales. Numerical measurements, in conjunction with the theory, will establish the limitations and scaling laws governing the device 3dB bandwidth, determine device architectures for thermo-electro-optical signal modulation rates down to the picosecond time scale for signal modulation surpassing -10dB and mode sizes that are substantially smaller compared to present-day all-optical elements. Notably, the proposed research presents a new approach and creates new pathway toward fast and efficient optical devices, circuitry, logic elements and additional may lead to innovative technologies related to integrated optics and all-optical electronics, a multibillion-dollar industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今的“信息时代”要求能够在相对较短的时间内传输和处理大量的数据。在医疗保健、网络安全、银行、通信、国防和太空探索等应用中,超快数据传输是通过对光子数据进行编码来实现的。然而,对更快数据处理的需求推动了微处理器技术的创新和进步,朝着更小,超快和低功耗的电子产品发展。尽管旨在开发高效电子设备的持续进展,但在过去几年中已经观察到微处理器时钟速度在约5GHz处的饱和。这可以归因于与电子互连和散热相关的损耗。全光学类似物正日益成为克服与电子学相关的限制的有吸引力的替代方案。然而,光子处理设备的实现需要有效的机制来实现微米和纳米尺度尺寸的光子-光子相互作用。在这里,我们提出了一种新的数据处理元件,一个全光开关,有可能作为一个高数据速率的电子设备的光学模拟,同时使设备的尺寸大大小于传统的光子元件。这项工作的一个重大影响将是为本科生开辟途径,包括代表性不足的群体,残疾退伍军人和低收入人口在亚拉巴马黑带地区参加半导体光子学和计算光学领域的前沿研究活动,实施新的教学方法,并通过让高中学生和当地社区参与有趣的主题来寻求更广泛的推广该提议寻求开发一种新的全光学等离子体开关,称为热辅助全等离子体开关,其具有基于通过在等离子体结构(或粒子)处激发的局部表面等离子体模式对金属掺杂半导体界面处的传播表面等离子体模式的热光电控制的操作。此外,分析和计算方法之间的协同作用将被追求,以揭示极端的轻物质相互作用,动力学和热机制,促进局部表面等离子体共振和表面等离子体极化激元相互作用,在很大程度上不均匀和快速变化的局部介电环境的金属-半导体界面。所获得的理解将被应用于设计和测试高性能光子元件的数值原型,如全光开关,可以在纳米和微观长度尺度上提供高数据速率。数值测量,结合理论,将建立的限制和缩放定律的设备的3dB带宽,确定设备架构的热电光信号调制速率下降到皮秒的时间尺度的信号调制超过-10dB和模式的大小,大大小于目前的全光学元件。值得注意的是,拟议的研究提出了一种新的方法,并创造了新的途径,以快速和高效的光学器件,电路,逻辑元件和其他可能导致创新技术相关的集成光学和全光电子,一个数十亿美元的产业。这个奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Response times of a degenerately doped semiconductor based plasmonic modulator
基于简并掺杂半导体的等离子体调制器的响应时间
  • DOI:
    10.1364/josab.485460
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vinnakota, Raj K.;Dong, Zuoming;Briggs, Andrew F.;Bank, Seth R.;Wasserman, Daniel;Genov, Dentcho A.
  • 通讯作者:
    Genov, Dentcho A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raj Vinnakota其他文献

Raj Vinnakota的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Thermal-lag自由活塞斯特林发动机启动与可持续运行机理研究
  • 批准号:
    51806227
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ERI:Elucidating the Mechanism and Effects of Enhanced Thermal Ablation of Tissues by Microbubble Assisted High Intensity Focused Ultrasound
ERI:阐明微泡辅助高强度聚焦超声增强组织热消融的机制和效果
  • 批准号:
    2301721
  • 财政年份:
    2023
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
  • 批准号:
    2403970
  • 财政年份:
    2023
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Standard Grant
Reconfiguring In-Situ Thermal Oil Recovery facilities for Steam Assisted Geothermal Power (SAGP) Extraction
重新配置蒸汽辅助地热发电 (SAGP) 开采的原位热油回收设施
  • 批准号:
    556563-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Alliance Grants
Reconfiguring In-Situ Thermal Oil Recovery facilities for Steam Assisted Geothermal Power (SAGP) Extraction
重新配置蒸汽辅助地热发电 (SAGP) 开采的原位热油回收设施
  • 批准号:
    556563-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Alliance Grants
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
  • 批准号:
    2203166
  • 财政年份:
    2021
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Standard Grant
Microwave-assisted catalytic process for adsorption/condensation and rapid thermal decomposition of low-concentration pollutants
微波辅助催化低浓度污染物吸附/冷凝和快速热分解过程
  • 批准号:
    21H03635
  • 财政年份:
    2021
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Machine-Learning Assisted Flapping Agitator Design Methodology Towards Enhanced Thermal-Hydraulic Performance
机器学习辅助拍板搅拌器设计方法以增强热工水力性能
  • 批准号:
    2033790
  • 财政年份:
    2020
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Standard Grant
Reconfiguring In-Situ Thermal Oil Recovery facilities for Steam Assisted Geothermal Power (SAGP) Extraction
重新配置蒸汽辅助地热发电 (SAGP) 开采的原位热油回收设施
  • 批准号:
    556563-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Alliance Grants
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
  • 批准号:
    1921438
  • 财政年份:
    2019
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
  • 批准号:
    1921484
  • 财政年份:
    2019
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了