Collaborative Research: Spatiotemporal variability of solar radiation partitioning in the sea ice system: Improving climate models using observations from the MOSAiC field campaign
合作研究:海冰系统中太阳辐射分区的时空变化:利用 MOSAiC 实地活动的观测结果改进气候模型
基本信息
- 批准号:2138788
- 负责人:
- 金额:$ 60.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Improved Arctic climate predictions are critical for society. They are needed to adapt to and plan for present and future change, both in the Arctic and for the rest of the planet. Climate models show that warming temperatures and Arctic sea ice loss will continue with increasing greenhouse gas concentrations. However, these models show large differences in the rate of warming and sea ice loss. These model differences largely come from imperfect representation of the interactions among the atmosphere, sea ice, and ocean. One of the key interactions is the reflection of sunlight by sea ice. In the spring, sea ice is snow-covered and reflects 85% of sunlight keeping the surface cool. However, moving into summer, the ice melts and the amount of sunlight reflected decreases, warming the surface resulting in more melt. It is critical to accurately represent this process in models. This project will combine observations and climate models to better simulate the processes controlling the interaction of sunlight and sea ice and their impact on sea ice melt. This modeling effort will lead to refined representation of sea ice in climate models, which will improve predictions of sea ice loss and global warming.This project will use observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) field campaign (Oct 2019 - Sept 2020) to improve key parameterizations for simulating sea ice physics and feedbacks through the analysis of relevant, process-oriented observations to enhance the predictive skill of climate models. It will focus on building model parameterizations that more accurately represent the variability of ice-albedo feedback processes. The methods include the integration of spatially and temporally coordinated field observations, single column modeling, and global climate modeling. We will synthesize field observations to produce a complete forcing/test dataset and iterate with single column modeling to develop parameterizations that improve the treatment of the spatial distribution of snow and melt ponds, light transmittance through sea ice, and responses to events such as summer snowfall and rain-on-snow events. Parameterizations will be incorporated in an open-source community climate model and used to evaluate improvements in sea ice predictability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
改善北极气候预测对社会至关重要。它们需要适应和规划北极和地球其他地区现在和未来的变化。气候模式显示,随着温室气体浓度的增加,气温升高和北极海冰的减少将继续下去。然而,这些模型在变暖和海冰损失的速度上显示出很大的差异。这些模式差异很大程度上来自于对大气、海冰和海洋之间相互作用的不完全描述。其中一个关键的相互作用是海冰对阳光的反射。在春天,海冰被雪覆盖,反射85%的阳光,保持表面凉爽。然而,进入夏季,冰融化,反射的阳光减少,使表面变暖,导致更多的融化。在模型中准确地表示这个过程是至关重要的。该项目将结合观测和气候模式,更好地模拟控制阳光和海冰相互作用的过程及其对海冰融化的影响。这种建模的努力将导致气候模型中海冰的精确表示,这将改善对海冰损失和全球变暖的预测。该项目将利用北极气候研究多学科漂流观测站(MOSAiC)野外活动(2019年10月至2020年9月)的观测结果,通过分析相关的、面向过程的观测结果,改进模拟海冰物理和反馈的关键参数化,以提高气候模式的预测技能。它将侧重于建立更准确地表示冰反照率反馈过程变异性的模型参数化。方法包括时空协调的野外观测综合、单列模式和全球气候模式。我们将综合现场观测数据,生成一个完整的强迫/测试数据集,并通过单列建模迭代,开发参数化,以改善雪和融池的空间分布、海冰的透光率以及对夏季降雪和雨雪事件等事件的响应。参数化将被纳入一个开源社区气候模型,并用于评估海冰可预测性的改进。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marika Holland其他文献
Living with uncertainty: Using multi-model large ensembles to assess emperor penguin extinction risk for the IUCN Red List
应对不确定性:利用多模式大集合评估帝企鹅在世界自然保护联盟红色名录中的灭绝风险
- DOI:
10.1016/j.biocon.2025.111037 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:4.400
- 作者:
Stéphanie Jenouvrier;Alice Eparvier;Bilgecan Şen;Francesco Ventura;Christian Che-Castaldo;Marika Holland;Laura Landrum;Kristen Krumhardt;Jimmy Garnier;Karine Delord;Christophe Barbraud;Philip Trathan - 通讯作者:
Philip Trathan
Marika Holland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marika Holland', 18)}}的其他基金
Collaborative Research: Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts
合作研究:整合南极环境和生物可预测性以获得最佳预测
- 批准号:
2037531 - 财政年份:2021
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant
Collaborative Research: Co-producing Understanding of Drivers and Consequences of Environmental Arctic Change: Science Support for SEARCH
合作研究:共同了解北极环境变化的驱动因素和后果:对SEARCH的科学支持
- 批准号:
2040538 - 财政年份:2021
- 资助金额:
$ 60.21万 - 项目类别:
Continuing Grant
Collaborative Research: Improving the Prediction of Sea Ice through Targeted Study of Poorly Parameterized Sea Ice Processes at MOSAiC and Responsive Model Development
合作研究:通过对 MOSAiC 参数化不良的海冰过程进行有针对性的研究和响应模型开发来改进海冰的预测
- 批准号:
1724748 - 财政年份:2017
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant
Collaborative Research: A Field Campaign to Promote Integration Between the Sea Ice Observational and Modeling Communities
合作研究:促进海冰观测和建模社区之间一体化的实地活动
- 批准号:
1503738 - 财政年份:2015
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant
Extending the Capabilities for Fully Coupled Land-Ice Simulations within the Community Earth System Model
扩展社区地球系统模型内全耦合陆地-冰模拟的能力
- 批准号:
1443652 - 财政年份:2015
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant
Facilitating Arctic System Science using the Community Earth System Model
使用社区地球系统模型促进北极系统科学
- 批准号:
1417642 - 财政年份:2014
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant
Supporting Community Use of the Community Earth System Model for Polar Science
支持社区使用社区地球系统模型进行极地科学
- 批准号:
1203303 - 财政年份:2012
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant
Implementation of Advanced Land-Ice Models in the Community Earth System Model
先进的陆地冰模型在社区地球系统模型中的实施
- 批准号:
1103686 - 财政年份:2011
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant
Type 1- L012170218: Collaborative Research: Ecosystem Impacts of Variability and Extreme Events in the Arctic
类型 1- L012170218:合作研究:北极变化和极端事件对生态系统的影响
- 批准号:
1048987 - 财政年份:2011
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant
Collaborative Research: Ocean Mixing Processes Associated with High Spatial Heterogeneity in Sea Ice and the Implications for Climate Models
合作研究:与海冰高度空间异质性相关的海洋混合过程及其对气候模型的影响
- 批准号:
0968703 - 财政年份:2010
- 资助金额:
$ 60.21万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335568 - 财政年份:2024
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335569 - 财政年份:2024
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331729 - 财政年份:2024
- 资助金额:
$ 60.21万 - 项目类别:
Continuing Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335570 - 财政年份:2024
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402947 - 财政年份:2024
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331728 - 财政年份:2024
- 资助金额:
$ 60.21万 - 项目类别:
Continuing Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 60.21万 - 项目类别:
Continuing Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402946 - 财政年份:2024
- 资助金额:
$ 60.21万 - 项目类别:
Standard Grant