Quantum Information Meets Quantum Matter: Long Range Entanglement and Dynamics Across Quantum Phase Transitions

量子信息遇上量子物质:量子相变的长程纠缠和动力学

基本信息

  • 批准号:
    2138905
  • 负责人:
  • 金额:
    $ 54.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Nontechnical SummaryThis award supports a program that integrates theoretical and computational research, education, and outreach at the intersection of quantum materials and quantum information. One of the major goals of quantum materials and matter is to understand how new kinds of organizations of electrons and atoms emerge from simple interactions, such as magnetism and superconductivity. Quantum information on the face of it is a very different discipline which deals with information coded in qubits rather than the classical bits, 0 and 1. This program brings together ideas of entanglement between qubits, explores their existence in quantum magnets, and elucidates their unique properties.Quantum systems show unusual properties not exhibited by classical systems, for example a single electron can behave both as a particle and a wave. An even more mind boggling and “weird” property, observable for two electrons or two photons (quanta of light), is quantum entanglement. If two electrons are created in a superposition of quantum states—say (1up, 2down) + (1down, 2up) where up and down indicate the direction of the angular momentum of the spinning electron. Now when one qubit is sent to observer A and the other to B, far apart so they cannot communicate with each other, something truly unbelievable happens: If A detects a spin up electron, B necessarily finds an electron with opposite spin. The two spins are entangled. Their precise spin orientations are revealed only when one of them is observed, at which point the spin of the other also gets precisely determined, even though physically very far from the observed electron. Recently, such entanglement was spectacularly demonstrated between photons separated by over 1200 km.Such entanglement occurs not just between two spins but between billions of spins that exist in magnetic materials with frustration. The emergent state of matter is called a quantum spin liquid. Frustration can arise due to competing interactions and lattice geometry preventing the spins from ordering and forming a magnet. It may appear that with no ordering all is lost, but no! the entangled soup is useful for creating aspecial kind of qubit called a topological qubit in which information can be stored in a non-local manner and remains protected from environmental effects that can scramble the information they contain. The goal of this project is to put together the theoretical foundation for quantum entanglement and its signatures in quantum materials.The research activity will go hand in hand with an education and outreach program. A holistic course on quantum information meets quantum matter that integrates the standard material with simulations, experiments, and current day research will be developed. The PI is a founder of the Scientific Thinkers program for elementary schools whose motto is “Meet a scientist, Be a scientist, Think like a scientist”. By developing videos on experiments using easily available materials, the engagement of volunteers from Ohio State with the school children and teachers will be greatly enhanced. The PI will develop the Culture Change in Physics (CHIP) program by creating recordings of women in physics and by connecting with the National Society of Black Physicists.Technical SummaryThis award supports theoretical and computational research and education in quantum materials, quantum matter, and related phenomena. Quantum systems show unusual non-classical properties, including quantum coherence, superposition and interference. But the most mind boggling and “weird” of all is quantum entanglement. Two-particle entanglement has been verified experimentally primarily using photons. This project aims toward the next frontier of multi-particle entanglement in quantum spin liquids (QSLs) consisting of billions of entangled spins, thereby unifying quantum information and quantum matter. The excitations in QSLs are fractionalized and are strong candidates for topological quantum computing. The two main thrusts that will be investigated are: (1) the physical nature of non-local correlations imprinted by long range entanglement due to quantum statistics, interactions, and topological order; and (2) the real-time dynamics of fractionalized quasiparticles and how they create novel entanglement patterns in QSLs.By now quantum phase transitions (QPT) between non-topological phases such as the superfluid-Mott transition in the Bose Hubbard model are well understood. This research activity will focus on understanding the QPT in the Kitaev model on a honeycomb lattice between a gapped and gapless QSL driven by a magnetic field and between two topologically ordered gapped phases that harbor very different excitations as a function of exchange anisotropy. Topologically ordered phases harbor unusual fractionalized excitations, whose emergent exchange statistics, abelian and non-abelian, are richer than the standard bosons and fermions found in nature. The aim will be to make testable predictions for experimental probes by coupling an ancilla to the system and by using two-point correlated noise spectroscopy to probe quantum entanglement.The research will go hand in hand with an education and outreach program. A holistic course on quantum information meets quantum matter that integrates the standard material with simulations, experiments, and current day research will be developed. The PI is a founder of the Scientific Thinkers program for elementary schools whose motto is “Meet a scientist, Be a scientist, Think like a scientist”. By developing videos on experiments using easily available materials, the engagement of volunteers from Ohio State with the school children and teachers will be greatly enhanced. The PI will develop the Culture Change in Physics (CHIP) program by creating recordings of women in physics and by connecting with the National Society of Black Physicists.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持一个整合量子材料和量子信息交叉领域的理论和计算研究、教育和推广的项目。量子材料和物质的主要目标之一是理解电子和原子的新组织是如何从简单的相互作用中产生的,比如磁性和超导性。从表面上看,量子信息是一门非常不同的学科,它处理的是用量子比特编码的信息,而不是用经典的比特,0和1。这个程序汇集了量子比特之间纠缠的想法,探索它们在量子磁体中的存在,并阐明它们的独特性质。量子系统表现出经典系统所没有的不寻常的特性,例如单个电子既可以表现为粒子又可以表现为波。对于两个电子或两个光子(光的量子)来说,一个更令人难以置信和“奇怪”的特性是量子纠缠。如果两个电子是在量子态的叠加中产生的,比如(1up, 2down) + (1down, 2up),其中上和下表示自旋电子角动量的方向。现在,当一个量子比特被发送给观察者A,另一个量子比特被发送给观察者B时,它们相距很远,无法相互通信,真正令人难以置信的事情发生了:如果A探测到一个自旋向上的电子,B必然会发现一个自旋相反的电子。这两个自旋纠缠在一起。它们的精确自旋方向只有在其中一个被观察到时才会显示出来,在这一点上,另一个的自旋也被精确地确定了,即使在物理上离被观察到的电子很远。最近,这种纠缠在相隔1200多公里的光子之间得到了惊人的证明。这种纠缠不仅发生在两个自旋之间,还发生在磁性材料中存在的数十亿个自旋之间。物质的涌现状态被称为量子自旋液体。由于相互竞争的相互作用和晶格几何形状阻止了自旋的排序和形成磁体,因此会产生挫败感。看起来,如果没有秩序,一切都将失去,但事实并非如此!纠缠汤对于创建一种被称为拓扑量子比特的特殊量子比特很有用,在这种量子比特中,信息可以以一种非局部的方式存储,并且仍然不受环境影响,因为环境影响会扰乱它们所包含的信息。该项目的目标是将量子纠缠及其在量子材料中的特征的理论基础整合在一起。这项研究活动将与一项教育和推广计划齐头并进。一门关于量子信息与量子物质的整体课程,将标准材料与模拟、实验和当前研究相结合。PI是小学科学思考者计划的创始人之一,该计划的座右铭是“遇见科学家,成为科学家,像科学家一样思考”。通过使用容易获得的材料制作实验视频,俄亥俄州立大学的志愿者与学校儿童和教师的接触将大大加强。PI将通过制作物理学女性的录音,并与全国黑人物理学家协会(National Society of Black Physics)建立联系,开发物理学文化变革(CHIP)项目。该奖项支持量子材料、量子物质和相关现象的理论和计算研究和教育。量子系统表现出不同寻常的非经典特性,包括量子相干、量子叠加和量子干涉。但最令人难以置信和“奇怪”的是量子纠缠。双粒子纠缠主要是用光子进行实验验证的。该项目旨在探索由数十亿个纠缠自旋组成的量子自旋液体(QSLs)中多粒子纠缠的下一个前沿,从而统一量子信息和量子物质。量子粒子的激发是分数化的,是拓扑量子计算的有力候选者。将研究的两个主要重点是:(1)由量子统计、相互作用和拓扑顺序引起的远程纠缠所印记的非局部相关的物理性质;(2)分数化准粒子的实时动力学,以及它们如何在量子固体粒子中创造新的纠缠模式。到目前为止,非拓扑相之间的量子相变(QPT),如玻色-哈伯德模型中的超流体-莫特相变,已经得到了很好的理解。这项研究活动将侧重于理解Kitaev模型中的蜂窝晶格中的QPT,该蜂窝晶格位于磁场驱动的有隙和无隙QSL之间,以及两个拓扑有序的有隙相之间,这两个相具有非常不同的激发,作为交换各向异性的函数。拓扑有序相包含不寻常的分数化激发,其紧急交换统计,阿贝尔和非阿贝尔,比自然界中发现的标准玻色子和费米子更丰富。其目的是通过将一个辅助装置耦合到系统中,并使用两点相关噪声光谱来探测量子纠缠,从而对实验探针做出可测试的预测。这项研究将与一项教育和推广计划齐头并进。一门关于量子信息与量子物质的整体课程,将标准材料与模拟、实验和当前研究相结合。PI是小学科学思考者计划的创始人之一,该计划的座右铭是“遇见科学家,成为科学家,像科学家一样思考”。通过使用容易获得的材料制作实验视频,俄亥俄州立大学的志愿者与学校儿童和教师的接触将大大加强。PI将通过制作物理学女性的录音,并与全国黑人物理学家协会(National Society of Black Physics)建立联系,开发物理学文化变革(CHIP)项目。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection of long-range entanglement in gapped quantum spin liquids by local measurements
通过局部测量检测带隙量子自旋液体中的长程纠缠
  • DOI:
    10.1103/physreva.106.042417
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Feng, Shi;He, Yanjun;Trivedi, Nandini
  • 通讯作者:
    Trivedi, Nandini
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nandini Trivedi其他文献

Probing Phases and Quantum Criticality using Deviations from the Local Fluctuation-Dissipation Theorem
使用局部涨落耗散定理的偏差探测相位和量子临界性
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Duchon;Yasuyuki Kato;Naoki Kawashima;Nandini Trivedi
  • 通讯作者:
    Nandini Trivedi
Multiscale Simulation for Large Scale System
大型系统的多尺度仿真
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masayuki Ochi;Ryotaro Arita;Nandini Trivedi;and Satoshi Okamoto;Takahiro Murashima
  • 通讯作者:
    Takahiro Murashima
Emergent quantum Majorana metal from a chiral spin liquid
从手性自旋液体中涌现的量子马约拉纳金属
  • DOI:
    10.1038/s41467-025-56789-8
  • 发表时间:
    2025-03-11
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Penghao Zhu;Shi Feng;Kang Wang;Tao Xiang;Nandini Trivedi
  • 通讯作者:
    Nandini Trivedi
Turbulent crystal and idealized glass
湍流晶体和理想化玻璃
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Duchon;Yasuyuki Kato;Naoki Kawashima;Nandini Trivedi;S. Sasa
  • 通讯作者:
    S. Sasa
Normal state of short coherence length superconductors: Qualitative differences between spin and charge correlations

Nandini Trivedi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nandini Trivedi', 18)}}的其他基金

2022 Correlated Electron Electron Systems: Topology and Correlations: Long-Range Entanglement in Many-Body Systems
2022 相关电子电子系统:拓扑和相关性:多体系统中的长程纠缠
  • 批准号:
    2218821
  • 财政年份:
    2022
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Accelerated discovery of chalcogenides for enhanced functionality in magnetotransport, multiorbital superconductivity, and topological applications
DMREF:合作研究:加速发现硫属化物以增强磁输运、多轨道超导和拓扑应用的功能
  • 批准号:
    1629382
  • 财政年份:
    2016
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Standard Grant
Quantum Monte Carlo Simulations of Quantum Criticality and Topological Phases
量子临界性和拓扑相的量子蒙特卡罗模拟
  • 批准号:
    1309461
  • 财政年份:
    2013
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Continuing Grant
Quantum Monte Carlo Simulations of Bose and Fermi Superfluids
玻色和费米超流体的量子蒙特卡罗模拟
  • 批准号:
    0907275
  • 财政年份:
    2009
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2022
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Discovery Grants Program - Individual
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2021
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Discovery Grants Program - Individual
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2020
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Discovery Grants Program - Individual
III:Small: Optimal Query Processing meets Information Theory: from Proofs to Algorithms
III:Small:最优查询处理遇到信息论:从证明到算法
  • 批准号:
    1907997
  • 财政年份:
    2019
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Continuing Grant
CIF: Small: Information Theory Meets Deep Learning: Universal Probability and Common Information for High-Dimensional Data
CIF:小:信息论遇见深度学习:高维数据的普遍概率和公共信息
  • 批准号:
    1911238
  • 财政年份:
    2019
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Standard Grant
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2019
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Discovery Grants Program - Individual
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2018
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Discovery Grants Program - Individual
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    DGECR-2018-00326
  • 财政年份:
    2018
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Discovery Launch Supplement
Quantum information meets quantum gravity
量子信息遇上量子引力
  • 批准号:
    1923790
  • 财政年份:
    2017
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Studentship
Trajectory data processing: Spatial computing meets information retrieval
轨迹数据处理:空间计算与信息检索的结合
  • 批准号:
    DP170102231
  • 财政年份:
    2017
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了