DMREF: Collaborative Research: Accelerated discovery of chalcogenides for enhanced functionality in magnetotransport, multiorbital superconductivity, and topological applications

DMREF:合作研究:加速发现硫属化物以增强磁输运、多轨道超导和拓扑应用的功能

基本信息

  • 批准号:
    1629382
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: Over the past decades, the discovery, understanding and applications of new solid-state materials have played a crucial role in modern technology. However, devices based on silicon have hit a bottleneck in terms of the amount of information that can be packed in nano-dimensions and still avoid the complications due to heating. This project will develop new paradigms, new principles and new classes of materials to design the next generation of multifunctional devices. The materials will be drawn from the heavy transition metal dichalcogenides (TMDCs) that combine topology and magnetism together to yield unusual magneto-transport properties. There is the potential to develop topological field effect transistors and thermomagnetic spintronic devices. The specific goals of this project are to synthesize TMDCs in bulk and thin film form, to explore their electronic properties, and compare with theoretical calculations. A tight-knit feedback loop where theory guides experiments and experiments inform theory will allow the team to design materials with the desired functionality. The projects will have multiple impacts on a broader scale through (i) synthesis of new materials that can be dispersed to the condensed matter community; (ii) creation and dissemination of modeling tools, algorithms, and software for computer-aided materials design; (iii) generation of web-based access and dissemination of materials-specific data toward enhancement of infrastructure for materials research; (iv) creation of a new online course and comprehensive training of graduate and undergraduate students across the breadth of topics (chemistry of materials, complementary spectroscopies, and multi-scale theoretical modeling); (v) coordination with local museums and schools to bring the excitement of new quantum materials to the public and the next generation of scientists; and (vi) and a new face to physics with three women in leadership positions in this team.TECHNICAL DESCRIPTION: The comparable energy scales of spin-orbit coupling and Coulomb correlations and the multi-pronged tunability by chemistry, electric field and strain afforded by van-der-Waals coupled layered structures of TMDCs, opens up an entirely new and rich parameter regime not available previously. The goal of this project is to explore TMDCs through a combination of synthesis, characterization and theoretical modeling and to determine a pathway for predicting and controlling the magneto-transport properties of these materials. The project team consists of PIs with complementary skills. The team is synergistic with expertise in material synthesis in bulk and thin film form, ability to perform spectroscopy in real-and momentum space, and advanced theoretical and computational methods. Combined with expertise to calculate the inhomogeneous response for a single realization of disorder, the goal is to generate universal phase diagrams in multi-parameter space. By following both materials- and computation- inspired routes, accelerated discovery of materials with desired optimized functionalities by an iterative feedback loop is inevitable. Some of the expected major breakthroughs from this project are: (1) Discovery and optimization of novel electronic phases with unusual magneto-transport properties. (2) Discovery of topologically protected surface states in the background of textured magnetic phases, revealing phenomena richer than topological band insulators. (3) Emergence of new paradigms for superconductivity in insulators or multi-band low density TMDCs, beyond the standard BCS theory of a Fermi surface instability. (4) The detection of spatially periodically modulated superconducting phases in strongly spin-orbit coupled systems. (5) Synthesis of new and optimization of existing materials with desired functionalities by tuning chemistry, strain and electric field gating.
非技术描述:在过去的几十年里,新型固态材料的发现、理解和应用在现代技术中发挥了至关重要的作用。然而,基于硅的设备在纳米尺寸的信息量方面遇到了瓶颈,并且仍然可以避免因加热而引起的复杂性。该项目将开发新的范例,新的原理和新的材料类别来设计下一代多功能设备。这种材料将从重过渡金属二硫族化合物(TMDCs)中提取,它将拓扑结构和磁性结合在一起,产生不寻常的磁输运特性。具有发展拓扑场效应晶体管和热磁自旋电子器件的潜力。该项目的具体目标是合成大块和薄膜形式的TMDCs,探索其电子性质,并与理论计算进行比较。一个紧密的反馈循环,理论指导实验,实验为理论提供信息,将允许团队设计具有所需功能的材料。这些项目将通过以下方式在更大范围内产生多重影响:(1)合成可以分散到凝聚态物质社区的新材料;(ii)创建和传播用于计算机辅助材料设计的建模工具、算法和软件;(iii)为加强材料研究的基础设施,生成基于网络的材料特定数据的访问和传播;(iv)创建新的在线课程,对研究生和本科生进行全面的培训,涵盖广泛的主题(材料化学、互补光谱学和多尺度理论建模);(v)与本地博物馆和学校合作,向公众和下一代科学家介绍新量子材料的精彩之处;(六)在这个团队中有三名女性担任领导职务,这是物理学的新面孔。技术描述:可比较的自旋轨道耦合和库仑相关的能量尺度,以及TMDCs的范德华耦合层状结构所提供的化学、电场和应变的多管齐下的可调性,开辟了一个全新的、丰富的参数体系。该项目的目标是通过合成、表征和理论建模的结合来探索TMDCs,并确定预测和控制这些材料的磁输运特性的途径。项目团队由具有互补技能的pi组成。该团队在块状和薄膜形式的材料合成方面具有协同作用,在实动量空间中执行光谱的能力,以及先进的理论和计算方法。结合专业知识计算非均匀响应的单一实现的无序,目标是产生通用相图在多参数空间。通过遵循材料和计算启发的路线,通过迭代反馈循环加速发现具有理想优化功能的材料是不可避免的。本项目有望取得的一些重大突破有:(1)发现和优化具有不同寻常磁输运性质的新型电子相。(2)在织构磁相背景下发现了拓扑保护表面态,揭示了比拓扑带绝缘子更丰富的现象。(3)出现了绝缘体或多波段低密度TMDCs超导的新范式,超越了标准的BCS费米表面不稳定性理论。(4)强自旋轨道耦合系统中空间周期调制超导相的探测。(5)通过调整化学、应变和电场门控,合成具有所需功能的新材料和优化现有材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nandini Trivedi其他文献

Probing Phases and Quantum Criticality using Deviations from the Local Fluctuation-Dissipation Theorem
使用局部涨落耗散定理的偏差探测相位和量子临界性
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Duchon;Yasuyuki Kato;Naoki Kawashima;Nandini Trivedi
  • 通讯作者:
    Nandini Trivedi
Multiscale Simulation for Large Scale System
大型系统的多尺度仿真
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masayuki Ochi;Ryotaro Arita;Nandini Trivedi;and Satoshi Okamoto;Takahiro Murashima
  • 通讯作者:
    Takahiro Murashima
Emergent quantum Majorana metal from a chiral spin liquid
从手性自旋液体中涌现的量子马约拉纳金属
  • DOI:
    10.1038/s41467-025-56789-8
  • 发表时间:
    2025-03-11
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Penghao Zhu;Shi Feng;Kang Wang;Tao Xiang;Nandini Trivedi
  • 通讯作者:
    Nandini Trivedi
Turbulent crystal and idealized glass
湍流晶体和理想化玻璃
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Duchon;Yasuyuki Kato;Naoki Kawashima;Nandini Trivedi;S. Sasa
  • 通讯作者:
    S. Sasa
Normal state of short coherence length superconductors: Qualitative differences between spin and charge correlations

Nandini Trivedi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nandini Trivedi', 18)}}的其他基金

Quantum Information Meets Quantum Matter: Long Range Entanglement and Dynamics Across Quantum Phase Transitions
量子信息遇上量子物质:量子相变的长程纠缠和动力学
  • 批准号:
    2138905
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
2022 Correlated Electron Electron Systems: Topology and Correlations: Long-Range Entanglement in Many-Body Systems
2022 相关电子电子系统:拓扑和相关性:多体系统中的长程纠缠
  • 批准号:
    2218821
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Quantum Monte Carlo Simulations of Quantum Criticality and Topological Phases
量子临界性和拓扑相的量子蒙特卡罗模拟
  • 批准号:
    1309461
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Quantum Monte Carlo Simulations of Bose and Fermi Superfluids
玻色和费米超流体的量子蒙特卡罗模拟
  • 批准号:
    0907275
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了