I-Corps: Advanced Truck Detection with Lidar Technology

I-Corps:采用激光雷达技术的先进卡车检测

基本信息

  • 批准号:
    2140306
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is to enable transportation agencies to gather critical freight movement data using passively collected and anonymous sensors. Anonymity is of key importance for the successful collection of transportation datasets, especially in the competitive freight industry. Traditional approaches such as image-based detection, cell phone tracking, or other visual monitoring (license plate tracking or logo recognition) can violate privacy considerations and hinder widespread freight data collection. Such data collection is necessary for travel demand modeling and forecasting as well as for infrastructure planning, operations, and maintenance for roadways, bridges, and freight terminals. The market for this advanced truck detection device includes public transportation agencies at the city, county, state, and national levels, traffic sensing device manufacturers, transportation consulting companies, and freight terminal operators. While current sensors may distinguish trucks from cars or trucks by axle configuration, there are no non-pavement intrusive technologies currently able to predict the body-type of the vehicle in enough detail to indicate freight carried. Agencies tasked with data collection often must rely on time-consuming periodic surveys to estimate where and what freight is moving on their highway system, making it difficult to produce timely project cost-benefit and resilience/impact analyses. Commercial applications can be extended to large distribution centers, mining areas, rail yards or other intermodal terminals and ports.This I-Corps project will further develop a system for low-cost, anonymous, and pavement-nonintrusive advanced truck detection by developing a side-fire (perpendicular to traffic flow) Lidar (Light Detection and Ranging)-based traffic detection and classification system. In side-fire configuration, Lidar sensors capture the profile of the truck (tractor and trailer/semi-trailer) which can be classified by body type with high-resolution while maintaining the anonymity of the driver, license/registration, and company. The innovation of this technology includes: 1) novel configuration and application of off-the-shelf Lidar technology for traffic detection, 2) coupling of technology with machine learning algorithms for feature detection, extraction, and classification with the aim of high-resolution truck classification, and 3) implementation of classification outputs in a data dashboard for real time and historical review. This novel truck detection solution using Lidar can enable a fundamental shift in how freight data is collected, especially by public transportation agencies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目的更广泛的影响/商业潜力是使运输机构能够使用被动收集和匿名传感器收集关键的货运数据。 敏捷性对于成功收集运输数据集至关重要,特别是在竞争激烈的货运行业。 传统的方法,如基于图像的检测,手机跟踪或其他视觉监控(车牌跟踪或徽标识别)可能会违反隐私考虑,并阻碍广泛的货运数据收集。 这种数据收集对于出行需求建模和预测以及道路、桥梁和货运码头的基础设施规划、运营和维护都是必要的。 这种先进的卡车检测设备的市场包括市、县、州和国家一级的公共交通机构、交通传感设备制造商、运输咨询公司和货运码头运营商。 虽然目前的传感器可以通过车轴配置将卡车与汽车或卡车区分开,但是目前还没有非路面侵入技术能够足够详细地预测车辆的车身类型以指示所运载的货物。 负责收集数据的机构往往必须依靠耗时的定期调查来估计其公路系统上的货物流向和运输情况,因此难以及时进行项目成本效益和复原力/影响分析。 商业应用可以扩展到大型配送中心、矿区、铁路站场或其他多式联运码头和港口。I-Corps项目将通过开发基于侧射(垂直于交通流)激光雷达(光检测和测距)的交通检测和分类系统,进一步开发一种低成本、匿名和非侵入性的先进卡车检测系统。 在侧射配置中,激光雷达传感器捕获卡车(牵引车和拖车/半拖车)的轮廓,可以通过高分辨率的车身类型进行分类,同时保持驾驶员,执照/注册和公司的匿名性。 该技术的创新包括:1)用于交通检测的现成激光雷达技术的新颖配置和应用,2)将技术与机器学习算法相结合,用于特征检测,提取和分类,旨在实现高分辨率卡车分类,以及3)在数据仪表板中实现分类输出,用于真实的时间和历史回顾。这一使用激光雷达的新型卡车检测解决方案可以从根本上改变货运数据的收集方式,特别是公共交通机构。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Hernandez其他文献

Prediction of waterborne freight activity with Automatic identification System using Machine learning
  • DOI:
    10.1016/j.cie.2024.110757
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sanjeev Bhurtyal;Hieu Bui;Sarah Hernandez;Sandra Eksioglu;Magdalena Asborno;Kenneth N. Mitchell;Marin Kress
  • 通讯作者:
    Marin Kress
Borderline Personality Features in Inpatients with Bipolar Disorder: Impact on Course and Machine Learning Model Use to Predict Rapid Readmission
双相情感障碍住院患者的边缘人格特征:对课程和机器学习模型用于预测快速再入院的影响
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    H. Salem;A. Ruiz;Sarah Hernandez;K. Wahid;Fei Cao;Brandi Karnes;S. Beasley;M. Sanches;Elaheh Ashtari;T. Pigott
  • 通讯作者:
    T. Pigott
Autoantibodies immuno-mechanically modulate platelet contractile force and bleeding risk
自身抗体免疫机械性调节血小板收缩力和出血风险
  • DOI:
    10.1038/s41467-024-54309-8
  • 发表时间:
    2024-11-25
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Oluwamayokun Oshinowo;Renee Copeland;Anamika Patel;Nina Shaver;Meredith E. Fay;Rebecca Jeltuhin;Yijin Xiang;Christina Caruso;Adiya E. Otumala;Sarah Hernandez;Priscilla Delgado;Gabrielle Dean;James M. Kelvin;Daniel Chester;Ashley C. Brown;Erik C. Dreaden;Traci Leong;Jesse Waggoner;Renhao Li;Eric Ortlund;Carolyn Bennett;Wilbur A. Lam;David R. Myers
  • 通讯作者:
    David R. Myers
Reliability Generalization of the Triarchic Psychopathy Measure.
三元精神病测量的可靠性概括。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Brianna N Davis;R. B. Spivey;Sarah Hernandez;Hadley McCartin;Tia Tourville;Laura E. Drislane
  • 通讯作者:
    Laura E. Drislane
Electric Vehicle Usage Patterns in Multi-Vehicle Households in the US: A Machine Learning Study
美国多车家庭的电动汽车使用模式:机器学习研究
  • DOI:
    10.3390/su16125200
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Vuban Chowdhury;S. Mitra;Sarah Hernandez
  • 通讯作者:
    Sarah Hernandez

Sarah Hernandez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah Hernandez', 18)}}的其他基金

CAREER: Towards Unbiased Long-Range Freight Planning Through Passive-Sensors and Workforce Diversity
职业生涯:通过无源传感器和劳动力多元化实现公正的远程货运规划
  • 批准号:
    2042870
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
  • 批准号:
    61201232
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
LTE-Advanced中继网络关键技术研究
  • 批准号:
    61171096
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
IMT-Advanced协作中继网络中的网络编码研究
  • 批准号:
    61040005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
面向IMT-Advanced的移动组播关键技术研究
  • 批准号:
    61001071
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
  • 批准号:
    61001116
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

In-Touch: Implementation of a person-centered palliative care iNtervention To imprOve comfort, QUality of Life and social engagement of people with advanced dementia in Care Homes
In-Touch:实施以人为本的姑息治疗干预措施,以提高护理院中晚期痴呆症患者的舒适度、生活质量和社会参与度
  • 批准号:
    10102690
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    EU-Funded
Advanced AI and RobotIcS for autonomous task pErformance
先进的人工智能和机器人控制系统可实现自主任务执行
  • 批准号:
    10110390
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    EU-Funded
Advanced Modelling Platform with Moving Ventricular Walls for Increasing Speed to Market of Heart Pumps
具有移动心室壁的先进建模平台可加快心脏泵的上市速度
  • 批准号:
    10071797
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
Advanced Aeroponics 2: Value engineering to unlock 3x ROI in horticulture
Advanced Aeroponics 2:价值工程可实现园艺领域 3 倍的投资回报率
  • 批准号:
    10089184
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
  • 批准号:
    10089539
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
  • 批准号:
    10089592
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
Advanced HR-ICP-MS facility for marine, Antarctic and environmental samples
用于海洋、南极和环境样品的先进 HR-ICP-MS 设施
  • 批准号:
    LE240100039
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Zwitterion-based electrolytes for advanced energy technologies
用于先进能源技术的两性离子电解质
  • 批准号:
    DP240101407
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Projects
Mem-Fast Membranes as Enablers for Future Biorefineries: from Fabrication to Advanced Separation Technologies
Mem-Fast 膜作为未来生物精炼的推动者:从制造到先进的分离技术
  • 批准号:
    EP/Y032004/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了