CAREER: Heat Semigroups and Strichartz Estimates on Fractals

职业:分形上的热半群和 Strichartz 估计

基本信息

  • 批准号:
    2140664
  • 负责人:
  • 金额:
    $ 42.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). This project aims to study the Schrödinger equation on fractals. In 1925, the physicist Erwin Schrödinger introduced an equation describing the behavior of quantum particles in terms of waves. The Schrödinger equation is usually studied under the assumption that the particle moves in an idealized, smooth environment. However, natural phenomena often occur in non-smooth settings such as highly porous media (for example, sponges or filters) or intricately branching structures (for example, large networks). Some of these features can be replicated using mathematical models called fractals. This project addresses the significant mathematical challenges posed in these non-smooth settings. The project will lay mathematical groundwork to study widely open questions, such as the behavior of electrons in a fractal environment. The educational component of the project seeks to bring topics such as fractals and probability to the attention of students as well as pre-service and in-service teachers. The project emphasizes service to the local Hispanic community and outreach to under-served secondary schools in Texas. The use of visually appealing models such as fractals will attract the attention of the broader public to the mathematical aspects of the proposed research.The research aims to produce mathematical tools to study the Schrödinger equation in fractal settings. The results obtained will contribute new knowledge to the fields of analysis and probability on fractals and will serve, for instance, in the mathematical modeling of quantum particles traveling in a percolating system. New techniques at the crossroads of probability, potential theory, functional analysis, and partial differential equations will be developed to construct suitable heat-semigroup based function spaces, to prove novel estimates for products of eigenfunctions, and to derive non-trivial dispersive (Strichartz) estimates of solutions to the linear Schrödinger equation on fractals. The project will also analyze the effects of random initial data on the existence and regularity of solutions, and will explore possible notions of quantum probability and quantum dynamics on fractals. The educational component seeks to integrate research and education at graduate and undergraduate levels. A new sustainable seminar course involving graduate students, undergraduate students, and pre-service and in-service teachers will result in innovative teaching materials on the subjects of probability and fractals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。本计画旨在研究薛定谔方程在分形上的应用。1925年,物理学家埃尔温·薛定谔引入了一个方程,描述了量子粒子在波中的行为。薛定谔方程通常在假设粒子在理想化的光滑环境中运动的情况下进行研究。然而,自然现象通常发生在非光滑环境中,例如高度多孔的介质(例如海绵或过滤器)或复杂的分支结构(例如大型网络)。其中一些特征可以用称为分形的数学模型来复制。该项目解决了在这些非光滑设置中所带来的重大数学挑战。该项目将为研究广泛开放的问题奠定数学基础,例如电子在分形环境中的行为。该项目的教育部分旨在引起学生以及职前和在职教师对分形和概率等主题的注意。该项目强调为当地西班牙裔社区提供服务,并向得克萨斯州服务不足的中学提供服务。使用视觉上吸引人的模型,如分形将吸引更广泛的公众的注意力,以数学方面的拟议research.The研究的目的是产生数学工具,研究薛定谔方程在分形设置。所获得的结果将为分形的分析和概率领域提供新的知识,例如,将用于量子粒子在量子系统中运动的数学建模。在概率论,势理论,泛函分析和偏微分方程的十字路口的新技术将被开发,以构建合适的热半群为基础的函数空间,以证明新的估计产品的特征函数,并获得非平凡的色散(Eschhartz)估计的解决方案的线性薛定谔方程的分形。该项目还将分析随机初始数据对解的存在性和规律性的影响,并将探索量子概率和量子动力学对分形的可能概念。教育部分力求将研究生和本科生的研究和教育结合起来。一个新的可持续的研讨会课程,涉及研究生,本科生,职前和在职教师将导致创新的教学材料的概率和分形的主题。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patricia Alonso Ruiz其他文献

Analysis, Probability and Mathematical Physics on Fractals
分形的分析、概率和数学物理
  • DOI:
    10.1142/11696
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patricia Alonso Ruiz;Joe P. Chen;Luke G. Rogers;R. Strichartz;A. Teplyaev
  • 通讯作者:
    A. Teplyaev
Explicit Formulas for Heat Kernels on Diamond Fractals
Yet another heat semigroup characterization of BV functions on Riemannian manifolds
黎曼流形上 BV 函数的另一个热半群表征
Korevaar-Schoen $p$-energies and their $Gamma$-limits on Cheeger spaces
Korevaar-Schoen $p$-能量及其在 Cheeger 空间上的 $Gamma$-限制
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patricia Alonso Ruiz;Fabrice Baudoin
  • 通讯作者:
    Fabrice Baudoin
Heat kernel analysis on diamond fractals

Patricia Alonso Ruiz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patricia Alonso Ruiz', 18)}}的其他基金

Stochastic Processes on Rough Spaces and Geometric Properties of Random Sets
粗糙空间上的随机过程和随机集的几何性质
  • 批准号:
    1951577
  • 财政年份:
    2019
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Continuing Grant
Stochastic Processes on Rough Spaces and Geometric Properties of Random Sets
粗糙空间上的随机过程和随机集的几何性质
  • 批准号:
    1855349
  • 财政年份:
    2019
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Continuing Grant

相似国自然基金

环路热管(Loop Heat Pipe)两相传热机理的理论与实验研究
  • 批准号:
    50676006
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Postdoctoral Fellowship: CREST-PRP: Exploring the Impact of Heat-Waves and Nutrients on Bloom-Forming and Habitat-Building Seaweeds Along the South Florida Coast
博士后奖学金:CREST-PRP:探索热浪和营养物质对南佛罗里达海岸海藻形成和栖息地建设的影响
  • 批准号:
    2401066
  • 财政年份:
    2024
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Standard Grant
SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
  • 批准号:
    2321862
  • 财政年份:
    2024
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Cooperative Agreement
NSF PRFB FY 2023: Thermoregulatory evolution of hummingbirds: Using urban heat islands as a globally replicated natural experiment
NSF PRFB 2023 财年:蜂鸟的体温调节进化:利用城市热岛作为全球复制的自然实验
  • 批准号:
    2305367
  • 财政年份:
    2024
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Fellowship Award
Antarctica's leaky defence to poleward heat transport
南极洲对极地热传输的防御漏洞
  • 批准号:
    DP240102358
  • 财政年份:
    2024
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Discovery Projects
Store Electricity and Heat foR climatE Neutral Europe (SEHRENE)
为欧洲气候中和储存电力和热能 (SEHRENE)
  • 批准号:
    10105664
  • 财政年份:
    2024
  • 资助金额:
    $ 42.47万
  • 项目类别:
    EU-Funded
The Use of Geothermal Energy for the Decarbonisation of Heat in Greater Manchester
利用地热能实现大曼彻斯特热量脱碳
  • 批准号:
    NE/Y004973/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Research Grant
NI: DEEPHEAT: Digging deep Earth for heat to promote environmental sustainability
NI:DEEPHEAT:挖掘地球深处的热量以促进环境可持续发展
  • 批准号:
    NE/W004127/2
  • 财政年份:
    2024
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Research Grant
Modelling heat and mass transfer during liquid hydrogen refuelling
模拟液氢加注过程中的传热和传质
  • 批准号:
    2911016
  • 财政年份:
    2024
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Studentship
Improving females' health and performance by mitigating heat strain
通过缓解热应激改善女性的健康和表现
  • 批准号:
    MR/X036235/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Fellowship
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了