Stochastic Processes on Rough Spaces and Geometric Properties of Random Sets
粗糙空间上的随机过程和随机集的几何性质
基本信息
- 批准号:1951577
- 负责人:
- 金额:$ 15.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-16 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
How does information spread within a system over time? How is this related to the intrinsic structure of the system? Mathematical models are developed to understand and make predictions about the behavior of highly complex processes and structures. Richer and more realistic models can be obtained by increasing their 'roughness'; here we may think of the intricate branching of large networks like the Internet. In addition, incorporating randomness can help to better describe the interactions between the elements that compose the model, for instance between different web servers. The area of mathematics concerned with the analysis of random processes and structures is called probability theory. This project aims to apply probability theory to better understand the interconnections between the random processes, the geometry, and the analysis of rough spaces and random geometric models. The research supported by this award aims to investigate stochastic processes in rough spaces and functionals of random sets. The PI will analyze the behavior of diffusion processes intrinsic to fractal-like spaces, where classical concepts such as derivatives or canonical measures are less straightforward or not even available. Special attention will be paid to the study of functional inequalities and gradient estimates to gain further insight into the connections between the process and the geometry of the underlying space. Besides, the PI will analyze properties of large spatial data sets modeled by point processes with long range dependencies. Here, the focus lies on geometric and potential-theoretic aspects of random covering sets and the asymptotic behavior of statistics employed in the detection of rare events. The PI expects that the methods and techniques developed will lead to progress on current questions in mathematical physics, material and data sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
信息是如何随着时间的推移在系统中传播的?这与系统的内在结构有何关系?开发数学模型是为了理解和预测高度复杂的过程和结构的行为。通过增加模型的“粗糙度”,可以获得更丰富、更真实的模型;在这里,我们可以想到像互联网这样的大型网络的复杂分支。此外,引入随机性可以帮助更好地描述组成模型的元素之间的交互,例如不同Web服务器之间的交互。与随机过程和结构的分析有关的数学领域称为概率论。这个项目的目的是应用概率论,以更好地理解随机过程之间的相互联系,几何,粗糙空间和随机几何模型的分析。 该奖项支持的研究旨在研究粗糙空间中的随机过程和随机集的泛函。PI将分析分形空间固有的扩散过程的行为,其中经典概念,如导数或正则测度不那么直接或甚至不可用。特别注意将支付给功能的不平等和梯度估计的研究,以获得进一步深入了解的过程和基础空间的几何之间的连接。此外,PI将分析由具有长程依赖性的点过程建模的大型空间数据集的属性。在这里,重点在于几何和潜在的理论方面的随机覆盖集和渐近行为的统计检测罕见的事件。PI期望所开发的方法和技术将导致数学物理,材料和数据科学当前问题的进展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Oscillations of BV measures on unbounded nested fractals
无界嵌套分形上 BV 度量的振荡
- DOI:10.4171/jfg/122
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Alonso Ruiz, Patricia;Baudoin, Fabrice
- 通讯作者:Baudoin, Fabrice
Minimal Gap in the Spectrum of the Sierpiński Gasket
SierpiÅski 垫片系列中的最小间隙
- DOI:10.1093/imrn/rnab243
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Alonso Ruiz, Patricia
- 通讯作者:Alonso Ruiz, Patricia
Heat kernel analysis on diamond fractals
- DOI:10.1016/j.spa.2020.08.009
- 发表时间:2019-06
- 期刊:
- 影响因子:1.4
- 作者:Patricia Alonso Ruiz
- 通讯作者:Patricia Alonso Ruiz
Besov class via heat semigroup on Dirichlet spaces I: Sobolev type inequalities
- DOI:10.1016/j.jfa.2020.108459
- 发表时间:2018-11
- 期刊:
- 影响因子:1.7
- 作者:Patricia Alonso Ruiz;Fabrice Baudoin;Li Chen;Luke G. Rogers;N. Shanmugalingam;A. Teplyaev
- 通讯作者:Patricia Alonso Ruiz;Fabrice Baudoin;Li Chen;Luke G. Rogers;N. Shanmugalingam;A. Teplyaev
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patricia Alonso Ruiz其他文献
Analysis, Probability and Mathematical Physics on Fractals
分形的分析、概率和数学物理
- DOI:
10.1142/11696 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Patricia Alonso Ruiz;Joe P. Chen;Luke G. Rogers;R. Strichartz;A. Teplyaev - 通讯作者:
A. Teplyaev
Explicit Formulas for Heat Kernels on Diamond Fractals
- DOI:
10.1007/s00220-018-3221-x - 发表时间:
2017-12 - 期刊:
- 影响因子:2.4
- 作者:
Patricia Alonso Ruiz - 通讯作者:
Patricia Alonso Ruiz
Yet another heat semigroup characterization of BV functions on Riemannian manifolds
黎曼流形上 BV 函数的另一个热半群表征
- DOI:
10.5802/afst.1745 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Patricia Alonso Ruiz;Fabrice Baudoin - 通讯作者:
Fabrice Baudoin
Korevaar-Schoen $p$-energies and their $Gamma$-limits on Cheeger spaces
Korevaar-Schoen $p$-能量及其在 Cheeger 空间上的 $Gamma$-限制
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Patricia Alonso Ruiz;Fabrice Baudoin - 通讯作者:
Fabrice Baudoin
Power dissipation in fractal Feynman-Sierpinski AC circuits
- DOI:
10.1063/1.4994197 - 发表时间:
2017-01 - 期刊:
- 影响因子:1.3
- 作者:
Patricia Alonso Ruiz - 通讯作者:
Patricia Alonso Ruiz
Patricia Alonso Ruiz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patricia Alonso Ruiz', 18)}}的其他基金
CAREER: Heat Semigroups and Strichartz Estimates on Fractals
职业:分形上的热半群和 Strichartz 估计
- 批准号:
2140664 - 财政年份:2022
- 资助金额:
$ 15.14万 - 项目类别:
Continuing Grant
Stochastic Processes on Rough Spaces and Geometric Properties of Random Sets
粗糙空间上的随机过程和随机集的几何性质
- 批准号:
1855349 - 财政年份:2019
- 资助金额:
$ 15.14万 - 项目类别:
Continuing Grant
相似国自然基金
Submesoscale Processes Associated with Oceanic Eddies
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 15.14万 - 项目类别:
Fellowship
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
- 批准号:
2338621 - 财政年份:2024
- 资助金额:
$ 15.14万 - 项目类别:
Continuing Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 15.14万 - 项目类别:
Standard Grant
EMBRACE-AGS-Growth: Diagnosing Kinematic Processes Responsible for Precipitation Distributions in Tropical Cyclones
EMBRACE-AGS-Growth:诊断热带气旋降水分布的运动过程
- 批准号:
2409475 - 财政年份:2024
- 资助金额:
$ 15.14万 - 项目类别:
Standard Grant
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
- 批准号:
2348641 - 财政年份:2024
- 资助金额:
$ 15.14万 - 项目类别:
Standard Grant
REU Site: Field and laboratory studies of coastal marine processes at the Shannon Point Marine Center
REU 站点:香农角海洋中心沿海海洋过程的现场和实验室研究
- 批准号:
2349136 - 财政年份:2024
- 资助金额:
$ 15.14万 - 项目类别:
Continuing Grant
Investigating Multi-Scale Dynamical Processes Amplifying Storm Surges
研究放大风暴潮的多尺度动力学过程
- 批准号:
2342516 - 财政年份:2024
- 资助金额:
$ 15.14万 - 项目类别:
Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 15.14万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 15.14万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319849 - 财政年份:2024
- 资助金额:
$ 15.14万 - 项目类别:
Standard Grant