Representing and learning stress: Grammatical constraints and neural networks
表示和学习压力:语法约束和神经网络
基本信息
- 批准号:2140826
- 负责人:
- 金额:$ 38.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Languages are systems of remarkable complexity, and linguists and computer scientists have devoted considerable effort to the development of methods for representing those complex systems, as well as computational methods for learning the system of a given language. This effort is driven by the desires to better understand human cognition, and to build better language technologies. This project draws on the theories and methods of both linguistics and computer science to study the learning of word stress, the pattern of relative prominence of the syllables in a word. The stress systems of the world's languages are relatively well described, and there are competing linguistic theories of how they are represented. This project applies learning methods from computer science to find new evidence to distinguish the competing linguistic theories. It also examines systems of language representation that have been developed in computer science and have received relatively little attention by linguists (neural networks). The research will engage undergraduate and graduate linguistics students at a public university. Linguistics has a much higher proportion of female students than computer science, and this project aims to address gender imbalance in STEM. From a linguistic perspective, learning stress involves learning hidden structure, parts of the representation that are not present in the observed data and that must be inferred by the learner. A given pattern of prominence over syllables is often consistent with multiple prosodic representations. The approach to hidden structure learning used in this project applies the general technique of Expectation Maximization, which in pilot work achieved good results on a standard test set. Intriguingly, many of the languages that this learner failed on in the test set are ones that are in fact cross-linguistically unattested. This project expands the set of tested languages to include more of the range of systems found cross-linguistically, and further explores the possibility that typological gaps have learning explanations. It compares hypotheses about the constraints responsible for stress placement by comparing how well they support the learning of attested systems, and whether they can help explain typological gaps. Pilot work also found indications that a neural network could learn generalizable representations of the data; the project is further testing this method. All of the software developed in this project is being made freely available, as is a database of the stress systems of the world’s languages.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
语言是非常复杂的系统,语言学家和计算机科学家已经投入了相当大的努力来发展表示这些复杂系统的方法,以及学习给定语言系统的计算方法。这种努力是由更好地理解人类认知和建立更好的语言技术的愿望驱动的。这个项目利用语言学和计算机科学的理论和方法来研究单词重音的学习,即单词中音节相对突出的模式。世界上各种语言的重音系统都被很好地描述了,关于它们是如何表现的,存在着相互竞争的语言学理论。本项目运用计算机科学的学习方法,寻找新的证据来区分相互竞争的语言学理论。它还研究了在计算机科学中发展起来的语言表示系统,这些系统很少受到语言学家(神经网络)的关注。这项研究将由一所公立大学的语言学本科生和研究生参与。语言学的女生比例远高于计算机科学,该项目旨在解决STEM中的性别失衡问题。从语言学的角度来看,学习压力涉及学习隐藏结构,即在观察数据中不存在的表征部分,必须由学习者推断。一个给定的突出音节模式通常与多个韵律表示相一致。本项目中使用的隐结构学习方法采用了期望最大化的一般技术,在标准测试集的试点工作中取得了良好的效果。有趣的是,这个学习者在测试集中失败的许多语言实际上是跨语言未经证实的。该项目扩展了测试语言集,以包括更多跨语言发现的系统范围,并进一步探索类型学差异具有学习解释的可能性。它通过比较它们对已证实系统的学习的支持程度,以及它们是否有助于解释类型差距,来比较关于压力放置的约束的假设。试点工作还发现,神经网络可以学习数据的泛化表示;该项目正在进一步测试这种方法。在这个项目中开发的所有软件都是免费提供的,世界语言的重音系统数据库也是如此。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Stress with Feet and Grids
用脚和网格学习压力
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lee, Seung Suk;Farinella, Alessa;Hughes, Cerys;Pater, Joe
- 通讯作者:Pater, Joe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Pater其他文献
Joseph Pater的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Pater', 18)}}的其他基金
Collaborative Research: Inside Phonological Learning
合作研究:语音学习内部
- 批准号:
1650957 - 财政年份:2017
- 资助金额:
$ 38.62万 - 项目类别:
Standard Grant
Conference: Perceptrons and Syntactic Structures at 60: Computational Modeling of Language
会议:60 岁的感知器和句法结构:语言的计算建模
- 批准号:
1651142 - 财政年份:2017
- 资助金额:
$ 38.62万 - 项目类别:
Standard Grant
Computing constraint-based derivations: Phonological opacity and hidden structure learning
计算基于约束的推导:语音不透明性和隐藏结构学习
- 批准号:
1424077 - 财政年份:2014
- 资助金额:
$ 38.62万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
- 批准号:
10825287 - 财政年份:2024
- 资助金额:
$ 38.62万 - 项目类别:
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 38.62万 - 项目类别:
Developing and Evaluating a Positive Valence Treatment for Alcohol Use Disorder with Anxiety or Depression
开发和评估治疗伴有焦虑或抑郁的酒精使用障碍的正价疗法
- 批准号:
10596013 - 财政年份:2023
- 资助金额:
$ 38.62万 - 项目类别:
Function, regulation, and conservation of hypoxia-induced glycolysis condensates
缺氧诱导的糖酵解缩合物的功能、调节和保存
- 批准号:
10552295 - 财政年份:2023
- 资助金额:
$ 38.62万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 38.62万 - 项目类别:
Developing machine learning based approaches to weld residual stress problems
开发基于机器学习的方法来解决焊接残余应力问题
- 批准号:
2894296 - 财政年份:2023
- 资助金额:
$ 38.62万 - 项目类别:
Studentship
Characterizing Entorhinal Cortex Circuit Dysfunction in an APOE Mouse Model of Chemotherapy-Induced Cognitive Impairment
化疗引起认知障碍的 APOE 小鼠模型中内嗅皮层回路功能障碍的特征
- 批准号:
10677984 - 财政年份:2023
- 资助金额:
$ 38.62万 - 项目类别:
Deciphering the role of VTA dopaminergic signaling in memory consolidation during sleep
解读 VTA 多巴胺能信号在睡眠期间记忆巩固中的作用
- 批准号:
10677962 - 财政年份:2023
- 资助金额:
$ 38.62万 - 项目类别:
Evaluating the Effects of Animal Therapy on Anxiety in Pediatric Dental Patients
评估动物疗法对小儿牙科患者焦虑的影响
- 批准号:
10649010 - 财政年份:2023
- 资助金额:
$ 38.62万 - 项目类别: