EAGER: ADAPT: Understanding Nonlinear Noise in LIGO: A Machine Learning Approach
EAGER:ADAPT:理解 LIGO 中的非线性噪声:一种机器学习方法
基本信息
- 批准号:2141072
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The detection of gravitational waves by LIGO has enacted a paradigm shift in the exploration and study of cosmic objects. Despite a series of upgrades and improvements, the LIGO detectors suffer from noise whose origin is largely unknown and whose presence limits the astrophysical reach of the detectors, thus reducing the mass and distance of systems accessible to observation. This project will develop novel machine learning methods capable of providing insight into the physical origins of noise in LIGO, yielding actionable information to guide commissioning efforts and future design decisions. Success in this project will improve the operational stability of the detectors and increase their astrophysical range, with the potential to advance scientific discovery. The project will train graduate and undergraduate students in the confluence of detector commissioning and machine learning (ML) and artificial intelligence (AI) research, will develop open-source tools for understanding and detecting noise in complex scientific experiments, and foster an interdisciplinary research community which bridges physics and machine learning. Finally, success in the project has the potential to benefit efforts in cloud infrastructure resilience, a problem with multiple parallels to understanding noise in LIGO.In addition to the main strain channel, each LIGO detector has over 10,000 auxiliary channels monitoring the operation of each subsystem and the seismic, acoustic, and electromagnetic environment. This vast data set can be leveraged to understand spurious effects in the interferometer that generate noise nonlinearities in the strain signal channel, and may cause the interferometer to lose lock. The challenge is that, unlike previous applications of ML/AI in LIGO, here there is no known ground truth (witness channels known to capture features related to the nonlinearities) or well-defined input-output relations in the channel data (due to feedback loops, which can reinject noise into unrelated parts of the system). To address these unique challenges, the project will develop novel unsupervised ML/AI methods to model and analyze the vast amounts of data recorded in the LIGO detectors, towards enhancing the understanding of the emergence of nonlinear noise. Developing new tools and approaches for identifying instrumental noise promises to significantly improve the sensitivity, data quality, and operational stability of LIGO and future facilities, with the potential to increase detection rates of mergers of the most massive stellar black holes by more than a factor of six. The ML/AI techniques developed will also advance the state-of-the-art in (a) physics-guided AI for anomaly detection in complex systems and (b) AutoML for joint exploration of data and AI model hyperparameters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
LIGO对引力波的探测已经在宇宙物体的探索和研究中产生了范式转变。尽管进行了一系列的升级和改进,LIGO探测器仍然受到噪声的影响,其来源在很大程度上是未知的,并且其存在限制了探测器的天体物理范围,从而减少了可观测系统的质量和距离。该项目将开发新的机器学习方法,能够深入了解LIGO中噪声的物理来源,产生可操作的信息,以指导调试工作和未来的设计决策。这一项目的成功将提高探测器的运行稳定性,扩大其天体物理范围,并有可能推动科学发现。该项目将在探测器调试和机器学习(ML)和人工智能(AI)研究的融合方面培训研究生和本科生,将开发用于理解和检测复杂科学实验中噪声的开源工具,并培养跨学科研究社区,将物理学和机器学习联系起来。最后,该项目的成功有可能有利于云基础设施弹性的努力,这是一个与理解LIGO中的噪声有多个相似之处的问题。除了主应变通道外,每个LIGO探测器还有超过10,000个辅助通道,用于监测每个子系统的运行以及地震,声学和电磁环境。这个庞大的数据集可以被用来理解干涉仪中的寄生效应,该寄生效应在应变信号通道中产生噪声非线性,并且可能导致干涉仪失锁。挑战在于,与之前LIGO中ML/AI的应用不同,这里没有已知的地面实况(已知捕获与非线性相关的特征的见证通道)或通道数据中定义良好的输入输出关系(由于反馈回路,可能会将噪声重新注入系统的不相关部分)。为了应对这些独特的挑战,该项目将开发新的无监督ML/AI方法来建模和分析LIGO探测器中记录的大量数据,以增强对非线性噪声出现的理解。开发识别仪器噪声的新工具和方法有望显着提高LIGO和未来设施的灵敏度,数据质量和操作稳定性,并有可能将最大质量恒星黑洞合并的检测率提高六倍以上。开发的ML/AI技术还将推进(a)用于复杂系统异常检测的物理引导AI和(B)用于数据和AI模型超参数联合探索的AutoML的最新技术。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying Witnesses to Noise Transients in Ground-based Gravitational-wave Observations using Auxiliary Channels with Matrix and Tensor Factorization Techniques
使用具有矩阵和张量分解技术的辅助通道识别地基引力波观测中噪声瞬变的证据
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gurav, Rutuja;Papalexakis, E.E.;Barish B.C.;Richardson, Jonatha;Vajente, Gabriele
- 通讯作者:Vajente, Gabriele
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Richardson其他文献
Divergent neural and endocrine responses in wild-caught and laboratory-bred <em>Rattus norvegicus</em>
- DOI:
10.1016/j.bbr.2022.113978 - 发表时间:
2022-08-26 - 期刊:
- 影响因子:
- 作者:
Joanna Jacob;Sally Watanabe;Jonathan Richardson;Nick Gonzales;Emily Ploppert;Garet Lahvis;Aaron Shiels;Sadie Wenger;Kelly Saverino;Janhavi Bhalerao;Brendan Crockett;Erin Burns;Olivia Harding;Krista Fischer-Stenger;Kelly Lambert - 通讯作者:
Kelly Lambert
Interactions of land-use history and current ecology in a recovering “urban wildland”
- DOI:
10.1023/a:1009584622756 - 发表时间:
1998-01-01 - 期刊:
- 影响因子:2.400
- 作者:
Andrew P. de Wet;Jonathan Richardson;Catherine Olympia - 通讯作者:
Catherine Olympia
Reply to Dr. Hammer
回复 哈默博士
- DOI:
10.1053/rapm.2002.37325 - 发表时间:
2002 - 期刊:
- 影响因子:5.1
- 作者:
Jos W. M. Geurts;J. Kallewaard;Jonathan Richardson;G. Groen - 通讯作者:
G. Groen
IMI ConcePTION core data elements for pregnancy pharmacovigilance studies using primary source data collection methods
- DOI:
10.1016/j.ntt.2023.107198 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Jonathan Richardson;Alan Moore;Rebecca Bromley;Michael Stellfeld;Yvonne Geissbühler;Matthew Bluett-Duncan;Ursula Winterfeld;Guillaume Favre;Kenneth Hodson;Alison Oliver;Amalia Alexe;Yrea van Rijt-Weetink;Bita Rezaallah;Eugene van Puijenbroek;David Lewis;Laura Yates - 通讯作者:
Laura Yates
#39 Pregnancy and fetal outcomes following maternal paracetamol overdose; a prospective case-series
- DOI:
10.1016/j.reprotox.2019.05.044 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:
- 作者:
Jonathan Richardson;Florence Martin;Sophie Cowling;Nathan George;Amanda Greenall;Sally Stephens;Kenneth Hodson;Simon Thomas - 通讯作者:
Simon Thomas
Jonathan Richardson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Richardson', 18)}}的其他基金
Collaborative Research: Enabling Megawatt Optical Power in Cosmic Explorer
合作研究:在宇宙探测器中实现兆瓦级光功率
- 批准号:
2309006 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Minimizing Quantum Decoherence in Gravitational-Wave Detectors
最小化引力波探测器中的量子退相干
- 批准号:
2110348 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RII Track-4: Comparative cityscape genomics of rats in four major cities
RII Track-4:四个主要城市的大鼠城市景观基因组学比较
- 批准号:
1738789 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SBIR Phase I: Determining the Microstructure of Porous Media Using Hyperpolarized 3He Nuclear Magnetic Resonance
SBIR 第一阶段:使用超极化 3He 核磁共振确定多孔介质的微观结构
- 批准号:
9861389 - 财政年份:1999
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SBIR Phase I: A High Pressure Polarized 3He Neutron Spin Filter
SBIR 第一阶段:高压极化 3He 中子旋转过滤器
- 批准号:
9560952 - 财政年份:1996
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Paleoecological Studies of Australian Diatoms
澳大利亚硅藻的古生态学研究
- 批准号:
7926261 - 财政年份:1980
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Travel to Attend: 2nd International Symposium on Paleo- Limnology, Mikolajki, Poland, September 14 - 20, 1976
前往参加:第二届古湖泊学国际研讨会,波兰米科拉伊基,1976 年 9 月 14 日至 20 日
- 批准号:
7680714 - 财政年份:1976
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
ADAPT技术治疗急性颅内大血管闭塞的成功率相关因素分析
- 批准号:2022J011448
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
- 批准号:
10713637 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
ADAPT: Adaptive Decision support for Addiction Treatment
ADAPT:成瘾治疗的自适应决策支持
- 批准号:
10810953 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
RAISE: ADAPT : Novel AI/ML methods to derive CMB temperature and polarization power spectra from uncleaned maps
RAISE:ADAPT:从未清理的地图中导出 CMB 温度和偏振功率谱的新颖 AI/ML 方法
- 批准号:
2327245 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FIRE-ADAPT: The Role of Integrated Fire Management on Climate Change Adaptation for Ecosystem Services in Tropical and Subtropical Regions
FIRE-ADAPT:综合火灾管理对热带和亚热带地区生态系统服务气候变化适应的作用
- 批准号:
EP/X041417/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
CO-ADAPT: Adaptive management of endemic coinfections in ruminant livestock under climate change
CO-ADAPT:气候变化下反刍牲畜地方性混合感染的适应性管理
- 批准号:
BB/X017567/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
How does the mammalian neocortex sense and adapt to metabolic state in health and disease?
哺乳动物新皮质如何感知和适应健康和疾病的代谢状态?
- 批准号:
MR/X00743X/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Biomimicry as an authentic anchor: Giving teachers the tools to adapt an interdisciplinary middle school curriculum
仿生学作为真正的锚点:为教师提供适应跨学科中学课程的工具
- 批准号:
2300433 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
The ADAPT Trial: Adapting Evidence-Based Obesity Interventions in Community Settings
ADAPT 试验:在社区环境中采用循证肥胖干预措施
- 批准号:
10585810 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Illuminating T cells in their local microenvironments to understand how they sense and adapt to their trigger during infection
照亮局部微环境中的 T 细胞,了解它们在感染过程中如何感知和适应触发因素
- 批准号:
2886434 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
How should cultivation activities in school gardens adapt to climate change?
学校菜园的栽培活动应如何适应气候变化?
- 批准号:
23K02789 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)