CAREER: Equitable medical decision-making

职业:公平的医疗决策

基本信息

  • 批准号:
    2142419
  • 负责人:
  • 金额:
    $ 53.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Enormous health inequality persists in the United States. Even prior to the COVID-19 pandemic. In many areas of the country, people with a higher income live up to decade longer than those in the lowest income levels. Additionally, the pandemic itself has hit low income and under-served populations especially hard. Biased medical decision-making contributes to this health inequality. For example, previous work has shown that one of widely used health risk prediction algorithms assesses African-American patients as less sick than equivalently sick White patients. This research will make medical decision-making fairer by statistically analyzing the decisions made both by humans and by algorithms. The research will identify sources of bias (for example, when medical tests are given to patients with better access to healthcare rather than to patients most likely to have a disease), and propose solutions (for example, reallocating tests to patients who are predicted to have the highest disease risk). This will not only make healthcare fairer; it can also make it more efficient, by allocating medical resources where they will do the most good. The project will also create a publicly available class on how to design fair algorithms, and conduct a large-scale study of how engineers can be trained to design fairer algorithms, to improve the preparedness of the engineering workforce.Because important medical decisions are made both by humans and by algorithms, the research pursues three objectives: 1) detecting bias in human medical decision-making, focusing on three high-stakes medical settings: allocation of medical testing, healthcare quality assessment, and interpretation of medical images. Further, the project will also build algorithmic decision-aids to reduce human bias, by drawing clinicians’ attention to medically relevant features they may have overlooked. Finally, the project targets making algorithmic decision-making more equitable, by examining the features it is appropriate to include in a medical algorithm. The research will be conducted in collaboration with clinicians to maximize translational benefit to patients. The methods developed, which draw on techniques in Bayesian inference and deep learning to provide interpretable models of how bias arises, are more generally applicable to decision-making across a host of high-stakes domains—including lending and hiring—and thus can impact a wide range of fields concerned with equity in decision-making, including law and economics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国,巨大的健康不平等仍然存在。甚至在COVID-19大流行之前。在该国的许多地区,收入较高的人比收入最低的人多活十年。此外,这一流行病本身对低收入和得不到充分服务的人口的打击尤其严重。有偏见的医疗决策助长了这种健康不平等。例如,以前的工作已经表明,一种广泛使用的健康风险预测算法评估非洲裔美国人患者的病情比同等病情的白色患者轻。这项研究将通过对人类和算法做出的决定进行统计分析,使医疗决策更加公平。该研究将确定偏差的来源(例如,当医学测试被给予更好地获得医疗保健的患者,而不是最有可能患有疾病的患者时),并提出解决方案(例如,将测试重新分配给预计具有最高疾病风险的患者)。这不仅会使医疗保健更加公平,还可以通过将医疗资源分配到最有效的地方来提高效率。该项目还将创建一个关于如何设计公平算法的公开课程,并进行一项大规模的研究,研究如何培训工程师设计更公平的算法,以提高工程人员的准备程度。由于重要的医疗决策是由人类和算法共同做出的,因此该研究追求三个目标:1)检测人类医疗决策中的偏差,重点关注三个高风险的医疗环境:医疗测试的分配,医疗质量评估和医学图像的解释。此外,该项目还将建立算法决策辅助工具,通过吸引临床医生注意他们可能忽略的医学相关特征来减少人类偏见。最后,该项目的目标是通过检查医疗算法中适合包含的功能,使算法决策更加公平。该研究将与临床医生合作进行,以最大限度地提高患者的转化效益。所开发的方法利用贝叶斯推理和深度学习技术来提供偏见如何产生的可解释模型,更普遍地适用于许多高风险领域的决策-包括贷款和招聘-因此可以影响广泛的领域。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting disparities in police deployments using dashcam data
Patients cannot consent to care unless they know how much it costs
除非患者知道护理费用是多少,否则他们无法同意接受护理
  • DOI:
    10.1136/bmj.o1747
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pierson, Leah;Pierson, Emma
  • 通讯作者:
    Pierson, Emma
Trucks Don’t Mean Trump: Diagnosing Human Error in Image Analysis
卡车并不意味着特朗普:诊断图像分析中的人为错误
  • DOI:
    10.1145/3531146.3533145
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zamfirescu-Pereira, J.D.;Chen, Jerry;Wen, Emily;Koenecke, Allison;Garg, Nikhil;Pierson, Emma
  • 通讯作者:
    Pierson, Emma
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emma Pierson其他文献

Using unlabeled data to enhance fairness of medical AI
利用未标记数据提高医疗人工智能的公平性
  • DOI:
    10.1038/s41591-024-02892-0
  • 发表时间:
    2024-04-19
  • 期刊:
  • 影响因子:
    50.000
  • 作者:
    Rajiv Movva;Pang Wei Koh;Emma Pierson
  • 通讯作者:
    Emma Pierson
Implications of Race Adjustment in Lung-Function Equations.
肺功能方程中种族调整的影响。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    158.5
  • 作者:
    James A. Diao;Yixuan He;Rohan Khazanchi;Max Jordan Nguemeni Tiako;Jonathan I Witonsky;Emma Pierson;P. Rajpurkar;J. Elhawary;Luke Melas;Albert Yen;Alicia R Martin;Sean Levy;Chirag J. Patel;Maha Farhat;Luisa N Borrell;Michael H Cho;Edwin K. Silverman;Esteban G. Burchard;A. Manrai
  • 通讯作者:
    A. Manrai
Artificial Intelligence for Cardiovascular Care—Part 1: Advances: emJACC/em Review Topic of the Week
人工智能在心血管护理中的应用——第1部分:进展:《美国心脏病学会杂志》本周综述主题
  • DOI:
    10.1016/j.jacc.2024.03.400
  • 发表时间:
    2024-06-18
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Pierre Elias;Sneha S. Jain;Timothy Poterucha;Michael Randazzo;Francisco Lopez Jimenez;Rohan Khera;Marco Perez;David Ouyang;James Pirruccello;Michael Salerno;Andrew J. Einstein;Robert Avram;Geoffrey H. Tison;Girish Nadkarni;Vivek Natarajan;Emma Pierson;Ashley Beecy;Deepa Kumaraiah;Chris Haggerty;Jennifer N. Avari Silva;Thomas M. Maddox
  • 通讯作者:
    Thomas M. Maddox
Participation in the age of foundation models
参与基础模型时代
Artificial Intelligence in Cardiovascular Care—Part 2: Applications: emJACC/em Review Topic of the Week
心血管护理中的人工智能——第2部分:应用:《美国心脏病学会杂志(电子版)》本周综述主题
  • DOI:
    10.1016/j.jacc.2024.03.401
  • 发表时间:
    2024-06-18
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Sneha S. Jain;Pierre Elias;Timothy Poterucha;Michael Randazzo;Francisco Lopez Jimenez;Rohan Khera;Marco Perez;David Ouyang;James Pirruccello;Michael Salerno;Andrew J. Einstein;Robert Avram;Geoffrey H. Tison;Girish Nadkarni;Vivek Natarajan;Emma Pierson;Ashley Beecy;Deepa Kumaraiah;Chris Haggerty;Jennifer N. Avari Silva;Thomas M. Maddox
  • 通讯作者:
    Thomas M. Maddox

Emma Pierson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Towards equitable early identification of autism spectrum disorders in females
实现女性自闭症谱系障碍的公平早期识别
  • 批准号:
    10722011
  • 财政年份:
    2023
  • 资助金额:
    $ 53.17万
  • 项目类别:
Accelerating Equitable PrEP Delivery for Black Adults in Primary Care Settings: Development and Testing of A Practice-Level Multifaceted Implementation Strategy
加快初级保健机构中黑人成人的公平 PrEP 实施:制定和测试实践层面的多方面实施策略
  • 批准号:
    10761903
  • 财政年份:
    2023
  • 资助金额:
    $ 53.17万
  • 项目类别:
Diverse & Equitable Student Inclusion in Research for future VETerinarians (DESIRe-Vet)
各种各样的
  • 批准号:
    10714842
  • 财政年份:
    2023
  • 资助金额:
    $ 53.17万
  • 项目类别:
The Empilisweni Center for Women's Health - Advancing Implementation of Equitable Cervical Cancer Control
Empilisweni 妇女健康中心 - 推进公平宫颈癌控制的实施
  • 批准号:
    10738103
  • 财政年份:
    2023
  • 资助金额:
    $ 53.17万
  • 项目类别:
Transdisciplinary and Equitable Approach to Maternal health (TEAM)
孕产妇健康跨学科和公平方法(TEAM)
  • 批准号:
    10756020
  • 财政年份:
    2023
  • 资助金额:
    $ 53.17万
  • 项目类别:
Development and Validation of an Equitable Computable Phenotype for Classifying Pediatric Sleep Deficiency in Electronic Health Records
开发和验证电子健康记录中儿童睡眠不足分类的公平可计算表型
  • 批准号:
    10724442
  • 财政年份:
    2023
  • 资助金额:
    $ 53.17万
  • 项目类别:
Expanding Access to Pregnancy Specific Opioid Use Disorder Treatment in Jail: Piloting and Adaptable Implementation Strategy to Advance Equitable and Patient-Centered Care
扩大监狱中妊娠期特定阿片类药物使用障碍治疗的机会:试点和适应性实施策略,以促进公平和以患者为中心的护理
  • 批准号:
    10593393
  • 财政年份:
    2023
  • 资助金额:
    $ 53.17万
  • 项目类别:
Equitable Measurement of Care Disparities and Needs in Intersex Youth/Youth with Variations in Sex Development
公平衡量双性青少年/性发育差异青少年的护理差异和需求
  • 批准号:
    10802992
  • 财政年份:
    2023
  • 资助金额:
    $ 53.17万
  • 项目类别:
Improving Pediatric Brain Injury Outcomes Through Equitable Care Implementation
通过实施公平护理改善儿童脑损伤的结果
  • 批准号:
    10597474
  • 财政年份:
    2022
  • 资助金额:
    $ 53.17万
  • 项目类别:
Advancing equitable implementation of genomic medicine in nephrology
促进基因组医学在肾病学领域的公平实施
  • 批准号:
    10701851
  • 财政年份:
    2022
  • 资助金额:
    $ 53.17万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了