CAREER: An Efficient Computational Framework for Data Driven Feedback Control

职业:数据驱动反馈控制的高效计算框架

基本信息

  • 批准号:
    2142672
  • 负责人:
  • 金额:
    $ 42.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Optimal control is a mathematical challenge that aims to find control actions that guide a controlled system to achieve optimal-cost performance. Most existing methods for optimal control assume that the state of the controlled system is fully observed, and therefore that the feedback from the controlled state is explicitly available. In many practical cases, however, the controlled system is not directly observable. In this project, the investigator aims to develop efficient and accurate data assimilation methods to analyze indirect observational data and to construct an efficient computational framework to design optimal control based on the information contained in the observational data. This new framework has the potential to benefit the control and design materials at the nano-scale as well as the controls of power systems at various scales to support reliable and an efficient electric grid. The project incorporates activities to train the next generation of data scientists with both mathematical insight and technical skills to address important practical challenges.The goal of this project is to develop an efficient computational framework that will allow data to optimally drive control actions. The primary efforts will be dedicated to the development of data driven optimal control methods, incorporating state-of-the-art data assimilation methods into stochastic optimal control solvers. The research carried out in this project also aims to elucidate inherent connections between data and actions. The research has two thrusts. The first thrust will focus on the development of mathematical and computational methods to establish an efficient data driven feedback control framework. Then, the methods developed in the first thrust will be applied to solve practical scientific and engineering feedback control problems in the second thrust.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最优控制是一项数学挑战,旨在找到引导受控系统实现最优成本性能的控制动作。大多数现有的最优控制方法假设受控系统的状态是完全可观察的,因此来自受控状态的反馈是明确可用的。然而,在许多实际情况下,被控系统是不可直接观测的。在这个项目中,研究者的目标是开发有效和准确的数据同化方法来分析间接观测数据,并构建一个有效的计算框架,根据观测数据中包含的信息设计最优控制。这种新的框架有可能有利于纳米级的控制和设计材料,以及各种规模的电力系统的控制,以支持可靠和高效的电网。该项目包括培训下一代数据科学家的活动,这些数据科学家具有数学洞察力和技术技能,以应对重要的实际挑战。该项目的目标是开发一个高效的计算框架,使数据能够最佳地驱动控制动作。主要工作将致力于数据驱动的最优控制方法的发展,将最先进的数据同化方法纳入随机最优控制求解器。在这个项目中进行的研究还旨在阐明数据和行动之间的内在联系。这项研究有两个重点。第一个推力将集中在数学和计算方法的发展,以建立一个有效的数据驱动的反馈控制框架。然后,在第一次推进中开发的方法将应用于解决第二次推进中的实际科学和工程反馈控制问题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kernel learning backward SDE filter for data assimilation
用于数据同化的内核学习向后 SDE 滤波器
  • DOI:
    10.1016/j.jcp.2022.111009
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Archibald, Richard;Bao, Feng
  • 通讯作者:
    Bao, Feng
A PDE-BASED ADAPTIVE KERNEL METHOD FOR SOLVING OPTIMAL FILTERING PROBLEMS
一种求解最优滤波问题的基于偏微分方程的自适应核方法
A stochastic maximum principle approach for reinforcement learning with parameterized environment
  • DOI:
    10.1016/j.jcp.2023.112238
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Archibald;F. Bao;J. Yong
  • 通讯作者:
    Richard Archibald;F. Bao;J. Yong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng Bao其他文献

Synthesis of Graphene Oxide Modified Poly(sebacic anhydride) Hybrid Materials for Controlled Release Applications
用于控释应用的氧化石墨烯改性聚癸二酸酐杂化材料的合成
Preparation of block poly (phthalazinone ether ketone) with excellent thermoforming properties through precursors containing ketimines
含酮亚胺前驱体制备热成型性能优良的嵌段聚二氮杂萘酮醚酮
  • DOI:
    10.1002/pat.5040
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Rui Zhang;Feng Bao;Jinyan Wang;Xigao Jian
  • 通讯作者:
    Xigao Jian
Study on preparation and properties of PMMA composite microspheres as the matrix of low density proppant.
低密度支撑剂基体PMMA复合微球的制备及性能研究
  • DOI:
    10.4028/www.scientific.net/amm.457-458.116
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yangcheng Xu;Tao Chen;Jiaoli Hu;Conghai Tang;Rui Ma;Jie Gao;Feng Bao
  • 通讯作者:
    Feng Bao
Functionality and feasibility of cognitive function training via mobile health application among youth at risk for psychosis
通过移动健康应用对有精神病风险的青少年进行认知功能训练的功能和可行性
  • DOI:
    10.37349/edht.2024.00007
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huijun Li;Shunwen Yang;Hongmei Chi;Lihua Xu;T. Zhang;Feng Bao;William Stone;Jijun Wang
  • 通讯作者:
    Jijun Wang
Transferable Neural Networks for Partial Differential Equations
偏微分方程的可转移神经网络
  • DOI:
    10.1007/s10915-024-02463-y
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zezhong Zhang;Feng Bao;Lili Ju;Guannan Zhang
  • 通讯作者:
    Guannan Zhang

Feng Bao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
  • 批准号:
    2340356
  • 财政年份:
    2024
  • 资助金额:
    $ 42.41万
  • 项目类别:
    Continuing Grant
Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies
高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育
  • 批准号:
    BB/Y004132/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.41万
  • 项目类别:
    Research Grant
Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies
高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育
  • 批准号:
    BB/Y003624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.41万
  • 项目类别:
    Research Grant
Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies
高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育
  • 批准号:
    BB/Y00339X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.41万
  • 项目类别:
    Research Grant
CAREER: Development of Adaptive and Efficient Computational Inverse Design Methods for Organic Functional Materials
职业:有机功能材料自适应高效计算逆向设计方法的开发
  • 批准号:
    2339804
  • 财政年份:
    2023
  • 资助金额:
    $ 42.41万
  • 项目类别:
    Standard Grant
CDS&E: ECCS: Accurate and Efficient Uncertainty Quantification and Reliability Assessment for Computational Electromagnetics and Engineering
CDS
  • 批准号:
    2305106
  • 财政年份:
    2023
  • 资助金额:
    $ 42.41万
  • 项目类别:
    Standard Grant
An Efficient Computational Solver for Complex Engineering Problems
复杂工程问题的高效计算求解器
  • 批准号:
    DE230101281
  • 财政年份:
    2023
  • 资助金额:
    $ 42.41万
  • 项目类别:
    Discovery Early Career Researcher Award
A computational efficient masking friendly post-quantum signature scheme secure to side-channel-attack
一种计算高效、屏蔽友好的后量子签名方案,可安全抵御侧信道攻击
  • 批准号:
    10045159
  • 财政年份:
    2023
  • 资助金额:
    $ 42.41万
  • 项目类别:
    Collaborative R&D
Next-generation computational enzyme design for the creation of efficient artificial biocatalysts
用于创建高效人工生物催化剂的下一代计算酶设计
  • 批准号:
    RGPIN-2021-03484
  • 财政年份:
    2022
  • 资助金额:
    $ 42.41万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of Continuous-Flow Mixing of Non-Newtonian Fluids with Energy-Efficient Coaxial Mixers through Advanced Flow Visualization Techniques and Computational Fluid Dynamics
通过先进的流动可视化技术和计算流体动力学研究使用节能同轴混合器的非​​牛顿流体的连续流动混合
  • 批准号:
    RGPIN-2019-04644
  • 财政年份:
    2022
  • 资助金额:
    $ 42.41万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了