Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies

高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育

基本信息

项目摘要

The genomes of organisms accumulate changes with the passage of time, recording the evolutionary history of species divergences and extinctions as a timepiece does. By sequencing genomes and integrating information from fossil records, scientists can reconstruct evolutionary trees and calibrate them to geological time. This molecular-clock dating approach has led to spectacular results by leveraging information from sequenced genomes, greatly enriching our understanding of the macroevolutionary process of species diversifications through time, and the possible driving factors such as major geological events and paleoclimate changes.Bayesian inference provides a flexible framework for integrating various sources of uncertainty in molecular clock dating analyses, such as uncertainties in the rate of molecular evolution over time, in the age and placement of fossils on species phylogenies, and in estimated molecular branch lengths from genomic data. However, Bayesian methods are computationally expensive as they require stochastic MCMC sampling to integrate over the uncertainties, and thus they are unable to handle the deluge of genomic data. This computational limitation is a major problem because genome-scale datasets are needed to achieve high precision in estimated evolutionary timescales, which allows the testing of precise evolutionary hypotheses that could never be addressed with the crude time estimates obtained with small molecular datasets.Our team has a track record of successfully developing Bayesian methods to infer evolutionary timescales, with our software packages, BPP and MCMCtree, being widely used by academic beneficiaries to reconstruct such timescales. The overarching aim of this proposal is to develop new models and algorithms for efficient inference of evolutionary timescales using large genome-scale datasets, and integrate these new methods into our existing software. We will develop (1) models that account for sequence errors (to accommodate DNA degradation) and integrate dated samples for analysis of ancient genomes, (2) cross-bracing calibrations to leverage information in gene duplications and horizontal gene transfer events for inferring ancient timescales, and (3) efficient MCMC sampling algorithms for analysis of species-rich phylogenomic datasets. The improved algorithms will make it possible to analyse large datasets with thousands of genomes, from the Darwin Tree of Life and Earth BioGenome projects, as well as helping reduce the carbon footprint of computational analyses.Finally, we will use our newly developed technologies to tackle three important case studies: (1) The evolution of human populations and other hominids, by integrating analysis of ancient and modern genomes within the multi-species coalescent model with introgression, (2) inferring the species-rich Tree of Life of Tetrapods (mammals, birds, crocodiles, turtles, lepidosaurs, and amphibians) in the context of three major past extinction events (end-Permian, Triassic-Jurassic, and end-Cretaceous), and the rapid global warming event during the Eocene-Palaeocene Thermal Maximum, and (3) inferring the Tree of Life of Eukaryotes, by integrating information from ancient gene duplication and horizontal gene transfer events, which will help reduce uncertainty in the timing some of the deepest speciation events in the history of Life on Earth.
生物体的基因组随着时间的推移不断积累变化,像钟表一样记录着物种分化和进化的历史。通过基因组测序和整合化石记录中的信息,科学家可以重建进化树,并将其校准到地质时间。这种分子钟测年方法通过利用测序基因组的信息而产生了惊人的结果,极大地丰富了我们对物种多样性随时间变化的宏观进化过程以及可能的驱动因素(如重大地质事件和古气候变化)的理解。贝叶斯推断为整合分子钟测年分析中的各种不确定性来源提供了一个灵活的框架,例如分子进化速率随时间的不确定性,化石在物种进化中的年龄和位置,以及从基因组数据估计的分子分支长度。然而,贝叶斯方法是计算昂贵的,因为它们需要随机MCMC采样来整合不确定性,因此它们无法处理洪水般的基因组数据。这种计算限制是一个主要问题,因为需要基因组规模的数据集来实现估计进化时间尺度的高精度,这允许测试精确的进化假设,而这些假设永远无法用小分子数据集获得的粗略时间估计来解决。我们的团队有成功开发贝叶斯方法来推断进化时间尺度的记录,我们的软件包BPP和MCMCTree,被学术界的受益者广泛用于重建这样的时间尺度。该提案的总体目标是开发新的模型和算法,用于使用大型基因组规模数据集有效推断进化时间尺度,并将这些新方法集成到我们现有的软件中。我们将开发(1)解释序列错误(以适应DNA降解)并整合过时样本以分析古代基因组的模型,(2)交叉支撑校准以利用基因复制和水平基因转移事件中的信息来推断古代时间尺度,以及(3)有效的MCMC采样算法用于分析物种丰富的基因组数据集。改进后的算法将使我们能够分析来自达尔文生命之树和地球生物基因组项目的数千个基因组的大型数据集,并帮助减少计算分析的碳足迹。最后,我们将使用我们新开发的技术来解决三个重要的案例研究:(1)人类种群和其他原始人的进化,通过在多物种结合模型中整合对古代和现代基因组的分析,(2)推断四足动物物种丰富的生命树(哺乳动物、鸟类、鳄鱼、海龟、鳞龙和两栖动物)在过去三次大灭绝事件中的作用(3)推断真核生物的生命树,通过整合来自古代基因复制和水平基因转移事件的信息,这将有助于减少地球生命历史上一些最深刻的物种形成事件的时间不确定性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mario Jose Dos Reis Barros其他文献

Mario Jose Dos Reis Barros的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mario Jose Dos Reis Barros', 18)}}的其他基金

Efficient Bayesian phylogenomic dating with new models of trait evolution and rich diversities of living and fossil species
利用性状进化的新模型以及活体和化石物种的丰富多样性进行有效的贝叶斯系统发育测定
  • 批准号:
    BB/T01282X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 58.65万
  • 项目类别:
    Research Grant

相似国自然基金

物体运动对流场扰动的数学模型研究
  • 批准号:
    51072241
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies
高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育
  • 批准号:
    BB/Y004132/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.65万
  • 项目类别:
    Research Grant
Computational design of frontier materials for sustainable technologies
可持续技术前沿材料的计算设计
  • 批准号:
    FL230100176
  • 财政年份:
    2024
  • 资助金额:
    $ 58.65万
  • 项目类别:
    Australian Laureate Fellowships
Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies
高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育
  • 批准号:
    BB/Y00339X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.65万
  • 项目类别:
    Research Grant
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 58.65万
  • 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
  • 批准号:
    10745593
  • 财政年份:
    2023
  • 资助金额:
    $ 58.65万
  • 项目类别:
Triage of Developmental and Reproductive Toxicants using an In vitro to In Vivo Extrapolation (IVIVE)-Toxicokinetic Computational modeling Application
使用体外到体内外推法 (IVIVE) 对发育和生殖毒物进行分类 - 毒代动力学计算模型应用
  • 批准号:
    10757140
  • 财政年份:
    2023
  • 资助金额:
    $ 58.65万
  • 项目类别:
Technologies of Futuring: Computational Modeling Practices at the Intersection of Environmental Governance and Environmental Justice
未来技术:环境治理与环境正义交叉点的计算建模实践
  • 批准号:
    2240748
  • 财政年份:
    2023
  • 资助金额:
    $ 58.65万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Building a strong community of computational researchers empowered in the use of novel cutting-edge technologies
协作研究:网络培训:试点:建立一个强大的计算研究人员社区,有权使用新颖的尖端技术
  • 批准号:
    2320990
  • 财政年份:
    2023
  • 资助金额:
    $ 58.65万
  • 项目类别:
    Standard Grant
Domain adaptation approaches to unify established and emerging sequencing technologies
领域适应方法统一现有和新兴的测序技术
  • 批准号:
    10643544
  • 财政年份:
    2023
  • 资助金额:
    $ 58.65万
  • 项目类别:
Spatially Resolved CRISPR Genomics for Dissecting Testicular Gene Functions at Scale
空间分辨 CRISPR 基因组学用于大规模剖析睾丸基因功能
  • 批准号:
    10573701
  • 财政年份:
    2023
  • 资助金额:
    $ 58.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了