EAGER:Real Time Federated Learning using Kernel Methods
EAGER:使用核方法的实时联合学习
基本信息
- 批准号:2142987
- 负责人:
- 金额:$ 25.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We are increasingly seeing increasing amounts of dynamic data coming from a variety of different applications ranging from the electric power grid to transportation systems to healthcare networks to social network data. This data comes from a variety of sources including sensor networks and IoT applications. A common feature is that much of this data is that it is distributed (at the edge) and methodologies need to be established to process, learn, and make decisions from this data. One approach is to gather all the data together at a central processor (in the cloud) and to process, learn, and make decisions here where computing resources are greater. The edge devices however are often constrained by communication costs which results in considerable power consumption especially if edge devices need to send information over wireless networks. Federated learning has been proposed where edge devices do not send data to the central processor, but send model parameters (weights) of model to edge devices. Each edge device modifies the weights based on data it receives and then send the modified weights back to the central processor. This proposal develops simple real-time learning algorithms at the edge processor based on unconstrained optimization methods using principles of federated learning and studies applications for power systems. The research results will be incorporated to both graduate and undergraduate courses in machine learning and signal processing. Special attention will be given to recruitment and retention of underrepresented students through the Native Hawaiian Science and Engineering Mentorship Program (NHSEMP) and the Society of Woman Engineers (SWE).The project makes advances in the field of real-time distributed learning and decision making using principles of federated learning, adaptive signal processing, graph signal processing, optimization, and kernel methods. The research is convergent bringing in the fields of signal processing, mathematics, statistics, and computer science together. The contributions are in three areas: algorithm development, analysis, and applicationsto the electric power grid. A focus is to design simple online kernel algorithms that are applicable for both supervised learning (regression, prediction, classification) and unsupervised learning (principal component analysis, probability density estimation). The algorithms focus on edge computing using optimization methods from online least squares kernel methods using variants of stochastic gradient and the temporal and spatial relationships between nodes represented as graphs. Tradeoffs are considered between optimizing objective functions, convergence, computational complexity, and communication costs. The online distributed kernel algorithms are then applied to detect bad data on the power grid and providing distributed learning capabilities for demand response (DR) programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们越来越多地看到越来越多的动态数据来自各种不同的应用程序,从电网到交通系统,从医疗网络到社交网络数据。这些数据来自各种来源,包括传感器网络和物联网应用。一个共同的特点是,这些数据中的大部分是分布的(在边缘),需要建立方法来处理、学习和根据这些数据做出决策。一种方法是在中央处理器(在云中)收集所有数据,并在计算资源较多的地方进行处理、学习和决策。然而,边缘设备往往受到通信成本的限制,这导致了相当大的功耗,特别是当边缘设备需要通过无线网络发送信息时。提出了一种边缘设备不向中央处理器发送数据,而是向边缘设备发送模型参数(权重)的联合学习方法。每个边缘设备根据接收到的数据修改权重,然后将修改后的权重发送回中央处理器。本提案基于无约束优化方法,利用联邦学习原理,在边缘处理器上开发简单的实时学习算法,并研究电力系统的应用。研究成果将被纳入研究生和本科生的机器学习和信号处理课程。通过夏威夷土著科学和工程指导计划(NHSEMP)和女工程师协会(SWE),将特别关注招募和保留代表性不足的学生。该项目利用联邦学习、自适应信号处理、图信号处理、优化和核方法的原理,在实时分布式学习和决策制定领域取得了进展。这项研究融合了信号处理、数学、统计学和计算机科学等领域。贡献集中在三个方面:算法开发、分析和电网应用。重点是设计简单的在线核算法,既适用于监督学习(回归、预测、分类),也适用于无监督学习(主成分分析、概率密度估计)。算法侧重于边缘计算,使用在线最小二乘核方法的优化方法,使用随机梯度的变体和节点之间的时空关系表示为图。在优化目标函数、收敛性、计算复杂性和通信成本之间进行权衡。然后应用在线分布式核算法检测电网中的不良数据,并为需求响应(DR)程序提供分布式学习能力。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clustered Graph Federated Personalized Learning
- DOI:10.1109/ieeeconf56349.2022.10051979
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:François Gauthier;Vinay Chakravarthi Gogineni;Stefan Werner;Yih-Fang Huang;A. Kuh
- 通讯作者:François Gauthier;Vinay Chakravarthi Gogineni;Stefan Werner;Yih-Fang Huang;A. Kuh
Personalized Online Federated Learning for IoT/CPS: Challenges and Future Directions
- DOI:10.1109/iotm.001.2200178
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Vinay Chakravarthi Gogineni;Stefan Werner;François Gauthier;Yih-Fang Huang;A. Kuh
- 通讯作者:Vinay Chakravarthi Gogineni;Stefan Werner;François Gauthier;Yih-Fang Huang;A. Kuh
Communication-Efficient Online Federated Learning Strategies for Kernel Regression
- DOI:10.1109/jiot.2022.3218484
- 发表时间:2023-03
- 期刊:
- 影响因子:10.6
- 作者:Vinay Chakravarthi Gogineni;Stefan Werner;Yih-Fang Huang;A. Kuh
- 通讯作者:Vinay Chakravarthi Gogineni;Stefan Werner;Yih-Fang Huang;A. Kuh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anders Host-Madsen其他文献
Anders Host-Madsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anders Host-Madsen', 18)}}的其他基金
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
- 批准号:
2324396 - 财政年份:2023
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
CIF: Small: Description Length Analysis for Machine Learning and Graph Models
CIF:小型:机器学习和图模型的描述长度分析
- 批准号:
1908957 - 财政年份:2019
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
Collaborate Research: Delay and Energy: Design Tradeoffs in Spectrally Efficient Systems
合作研究:延迟和能量:频谱效率系统的设计权衡
- 批准号:
1923751 - 财政年份:2019
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
CIF:EAGER:Information Theory Approaches for finding Atypical Sequences
CIF:EAGER:寻找非典型序列的信息论方法
- 批准号:
1434600 - 财政年份:2014
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
CIF:Small:Collaborative Research:Minimum Energy Communications in Wireless Networks
CIF:小:合作研究:无线网络中的最小能量通信
- 批准号:
1017823 - 财政年份:2010
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
Collaborative Research: Capacity and Coding in Resource-Limited Wireless Networks
合作研究:资源有限无线网络中的容量和编码
- 批准号:
0729152 - 财政年份:2007
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
SENSORS: Cooperative Diversity for Wireless Sensor Networks
传感器:无线传感器网络的协作多样性
- 批准号:
0329908 - 财政年份:2003
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
相似国自然基金
Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
- 批准号:30600737
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
- 批准号:60608018
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Building a Provable Differentially Private Real-time Data-blind ML Algorithm: A case study on Enhancing STEM Student Engagement in Online Learning
EAGER:构建可证明的差分隐私实时数据盲机器学习算法:关于增强 STEM 学生在线学习参与度的案例研究
- 批准号:
2329919 - 财政年份:2023
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2405142 - 财政年份:2023
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151021 - 财政年份:2022
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151022 - 财政年份:2022
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Inoculation vs. education: the role of real time alerts and end-user overconfidence
EAGER:DCL:SaTC:实现跨学科协作:接种与教育:实时警报和最终用户过度自信的作用
- 批准号:
2210198 - 财政年份:2022
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
EAGER: Compact Field Portable Biophotonics Instrument for Real-Time Automated Analysis and Identification of Blood Cells Impact Impacted by COVID-19
EAGER:紧凑型现场便携式生物光子学仪器,用于实时自动分析和识别受 COVID-19 影响的血细胞
- 批准号:
2141473 - 财政年份:2022
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151020 - 财政年份:2022
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
EAGER: MEMS Enabled Real Time Detection of Pathogens Viruses and Biomarkers
EAGER:MEMS 实现病原体病毒和生物标记物的实时检测
- 批准号:
2210471 - 财政年份:2022
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Development of an Energy-Harvesting Real-time Under-ice Monitoring System in the Arctic Ocean
EAGER:合作研究:北冰洋能量收集实时冰下监测系统的开发
- 批准号:
2134146 - 财政年份:2021
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: High-throughput, Autonomous Real-time Monitoring of Tissue Mechanical Property Change via Impedimetric Sensor Arrays
EAGER/协作研究:通过阻抗传感器阵列高通量、自主实时监测组织机械性能变化
- 批准号:
2141008 - 财政年份:2021
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant














{{item.name}}会员




