CAREER: Tunable Graphene Microelectrodes for Real-time Biological Sensing

职业:用于实时生物传感的可调谐石墨烯微电极

基本信息

  • 批准号:
    2143520
  • 负责人:
  • 金额:
    $ 67.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).With the support of the Chemical Measurement and Imaging (CMI) Program in the Division of Chemistry, Ashley Ross of the University of Cincinnati is studying how graphene, a single layer of carbon atoms arranged in a two-dimensional honeycomb lattice, can be used to sense neurochemicals. By controlling the direction of the carbon atoms in the honeycomb and placing different kinds of atoms on the surface of the graphene, Dr. Ross and their research team will work toward making electrodes that can electrically communicate in an effective way with chemicals that are key to understanding the nervous system. This new approach with graphene electrodes offers the possibility of systematically studying how tuning the orientation of the honeycomb edge and the surface chemistry of graphene can be used to make electrodes capable of sensing neurochemicals better than methods known for 40 years. Such tunable electrodes are expected to offer extremely rapid sensing of changes in the amounts of neurochemicals within very tiny areas of the body, which would be very valuable to understanding the way messages are sent and received by the nervous system. This new route to making tailored and rapid sensing of neurochemicals may shed light on the way in which a variety of cells are given and receive instructions to initiate, stop, or regulate biological responses. Importantly, the new graphene fiber electrodes have the potential to give a glimpse into the immune response and its programming by neurochemicals, by detecting fast changes in their amounts in whole organs. The project is anticipated to have a long-term impact on sensing by providing new measurement tools and an understanding of how the surface of the electrode and the structure of neurochemicals influence their detection. The impact of the project is to be broadened by building on an on-line discussion platform and seminar series, titled “Analytical Chemistry Diversity Colloquium”, to increase engagement and to nationally promote the work of underrepresented scientists in analytical chemistry. In addition, this project will develop multidisciplinary and discussion-based modules to be incorporated into courses to improve scientific literacy, create an environment of inclusion, and excite students from diverse backgrounds about analytical chemistry. There is a current knowledge gap in electrochemical sensing about enabling correlation and prediction of how changes in electrode structure and chemistry impacts the interface between solution-phase analytes having different structures and the electrode surface. The ability to precisely control and correlate how specific chemical and structural properties of the electrode impact detection of electroactive biomolecules will significantly influence our understanding of electrode-analyte interactions to enable exquisitely designed electrode surfaces for improved real-time biological sensing. In this project, we will advance knowledge of analyte-electrode interactions with fast-scan cyclic voltammetry because it is the primary electrochemical method used to probe real-time neurochemical signaling; therefore, this approach will have a major impact on dynamic neurochemical sensing. This project will focus on synthesizing and characterizing tunable graphene fiber microelectrodes to measure how carbon surface orientation and alignment, functionalization, surface energy, and three-dimensional structure impact electrochemical detection of neurochemicals. This proposal will ultimately enable expansion of real-time neurochemical sensing to beyond the brain to study nervous system regulation of immunity, communication along the gut-brain axis, and more, by providing significantly improved electrodes that enable ultra-sensitive and high-temporal-resolution measurements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。在化学系化学测量和成像(CMI)项目的支持下,辛辛那提的阿什利罗斯正在研究石墨烯(一种排列在二维蜂窝晶格中的单层碳原子)如何用于感知神经化学物质。 通过控制蜂窝中碳原子的方向,并在石墨烯表面放置不同种类的原子,罗斯博士和他们的研究团队将致力于制造能够以有效的方式与化学物质进行电通信的电极,这些化学物质是理解神经系统的关键。 这种使用石墨烯电极的新方法提供了系统研究如何调整蜂窝边缘的方向和石墨烯的表面化学的可能性,以使电极能够比40年来已知的方法更好地传感神经化学物质。 这种可调电极有望提供对身体非常微小区域内神经化学物质数量变化的极其快速的感知,这对于理解神经系统发送和接收信息的方式非常有价值。 这种对神经化学物质进行定制和快速感知的新途径可能会揭示各种细胞被给予并接受指令以启动,停止或调节生物反应的方式。 重要的是,新的石墨烯纤维电极有可能通过检测整个器官中免疫反应及其神经化学物质的快速变化来了解免疫反应及其编程。 该项目预计将通过提供新的测量工具以及了解电极表面和神经化学物质的结构如何影响其检测来对传感产生长期影响。 该项目的影响将通过建立一个在线讨论平台和题为“分析化学多样性座谈会”的系列研讨会来扩大,以增加参与并在全国促进分析化学领域代表性不足的科学家的工作。 此外,该项目将开发多学科和基于讨论的模块,以纳入课程,以提高科学素养,创造包容性的环境,并激发来自不同背景的学生对分析化学的兴趣。目前在电化学传感中存在关于能够关联和预测电极结构和化学的变化如何影响具有不同结构的溶液相分析物与电极表面之间的界面的知识缺口。 精确控制和关联电极的特定化学和结构特性如何影响电活性生物分子的检测的能力将显著影响我们对电极-分析物相互作用的理解,以实现精细设计的电极表面,用于改进的实时生物感测。 在这个项目中,我们将用快速扫描循环伏安法提高分析物-电极相互作用的知识,因为它是用于探测实时神经化学信号的主要电化学方法;因此,这种方法将对动态神经化学传感产生重大影响。 该项目将专注于合成和表征可调石墨烯纤维微电极,以测量碳表面取向和排列,功能化,表面能和三维结构如何影响神经化学物质的电化学检测。 这一提议最终将使实时神经化学传感扩展到大脑之外,以研究免疫的神经系统调节,沿着沿着肠-脑轴的通信,等等,通过提供显著改进的电极,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的评估来支持。影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graphene oxide fiber microelectrodes with controlled sheet alignment for sensitive neurotransmitter detection
具有受控薄片排列的氧化石墨烯纤维微电极,用于灵敏的神经递质检测
  • DOI:
    10.1039/d3nr02879h
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Jarosova, Romana;Ostertag, Blaise J.;Ross, Ashley E.
  • 通讯作者:
    Ross, Ashley E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashley Ross其他文献

Enhancement and Implementation of a Health Information Technology Module to Improve the Discrete Capture of Cancer Staging in a Diverse Regional Health System
增强和实施健康信息技术模块,以改善不同区域卫生系统中癌症分期的离散捕获
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Macy B Walesa;Ashley Denny;Alpa Patel;Megan Mulcahy;S. Kircher;Christopher George;Dean Tsarwhas;Ashley Ross;Leonidas C Platanias;V. Poylin;A. Yang;C. Barnard;K. Bilimoria;R. Merkow
  • 通讯作者:
    R. Merkow
MOLECULAR CORRELATES WITH PSMA EXPRESSION IN PRIMARY PROSTATE CANCER
  • DOI:
    10.1016/j.urolonc.2024.01.238
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adam B. Weiner;Nicholas Wang;Raag Agrawal;Ida Sonni;Luca Valle;Amar Kishan;John Shen;Matthew Rettig;Jeremie Calais;Paul Boutros;Robert Reiter;Eric Li;Ashley Ross;Edward Scaheffer;JJ Zhang;Elai Davicioni
  • 通讯作者:
    Elai Davicioni
MP55-18 RACE IMPACTS ETS FAMILY TRANSCRIPTION FACTOR EXPRESSION IN PROSTATE CANCER: DATA FROM A MULTI-INSTITUTIONAL COHORT
  • DOI:
    10.1016/j.juro.2015.02.2061
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Farzana Faisal;Debasish Sundi;Ashley Ross;Eric Klein;Robert Den;Adam Dicker;Voleak Choeurng;Nicholas Erho;Mohammed Alshalalfa;Elai Davicioni;Tamara Lotan;Edward Schaeffer
  • 通讯作者:
    Edward Schaeffer
MP09-12 FREEDOM FROM BIOCHEMICAL RECURRENCE AND METASTASIS IN MEN WITH VERY HIGH RISK PROSTATE CANCER TREATED AT A TERTIARY CENTER: VALIDATION OF A NEW RISK STRATUM
  • DOI:
    10.1016/j.juro.2016.02.2299
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Debasish Sundi;Jeffrey Tosoian;Mary Achim;John Davis;Curtis Pettaway;John Ward;Surena Matin;Louis Pisters;Edward Schaeffer;Ashley Ross;Brian Chapin
  • 通讯作者:
    Brian Chapin
MP30-19 PROPENSITY SCORE COMPARATIVE MATCHING OF ONCOLOGICAL AND FUNCTIONAL OUTCOMES OF PRIMARY FOCAL VS WHOLE GLAND CRYOTHERAPY FOR PROGNOSTIC GRADE GROUPS (PGG) 4 AND 5 PROSTATE CANCER
  • DOI:
    10.1016/j.juro.2018.02.960
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ahmed Elshafei;Thomas Polascik;Ashley Ross;Robert Given;Asmaa Hatem;Michael Cher;Jim C. Hu;J. Stephen Jones
  • 通讯作者:
    J. Stephen Jones

Ashley Ross的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Designing and Probing Emergent Phases with Tunable Magnons in Graphene
职业:利用石墨烯中的可调磁振子设计和探测涌现相
  • 批准号:
    2339623
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: Tunable Graphene Microdevices for Multiplexed Detection of Biomolecules Beyond Diffusion Limit
职业:可调谐石墨烯微器件,用于超越扩散极限的生物分子的多重检测
  • 批准号:
    2236997
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Developing tunable nanoporous graphene membranes for resource recovery
开发用于资源回收的可调纳米多孔石墨烯膜
  • 批准号:
    DE230101021
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding superconductivity in twisted bilayer graphene using in situ tunable heterostructures.
使用原位可调异质结构了解扭曲双层石墨烯的超导性。
  • 批准号:
    545737-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Postdoctoral Fellowships
Understanding superconductivity in twisted bilayer graphene using in situ tunable heterostructures.
使用原位可调异质结构了解扭曲双层石墨烯的超导性。
  • 批准号:
    545737-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Postdoctoral Fellowships
Understanding superconductivity in twisted bilayer graphene using in situ tunable heterostructures.
使用原位可调异质结构了解扭曲双层石墨烯的超导性。
  • 批准号:
    545737-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Postdoctoral Fellowships
Current-Control Methods in Graphene Transmission Lines for Tunable Antennas on Printed Circuit Boards
印刷电路板上可调谐天线石墨烯传输线的电流控制方法
  • 批准号:
    521166-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Engage Grants Program
Electrically Tunable Graphene Gas Sensors
电可调石墨烯气体传感器
  • 批准号:
    1711227
  • 财政年份:
    2017
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Electrically-Tunable Surface Energy and Reactivity of Graphene
石墨烯的电可调表面能和反应性
  • 批准号:
    1708852
  • 财政年份:
    2017
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Tunable graphene-based metal nanocomposite materials for electro-catalytic application
用于电催化应用的可调石墨烯基金属纳米复合材料
  • 批准号:
    326939428
  • 财政年份:
    2017
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了