Electrically-Tunable Surface Energy and Reactivity of Graphene
石墨烯的电可调表面能和反应性
基本信息
- 批准号:1708852
- 负责人:
- 金额:$ 37.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Description: Typically the surface characteristics of conventional materials cannot be changed without disturbing materials' intrinsic properties. For example, chemical treatments are used to alter the surface characteristics of semiconductors, and a continuous flow of electrical currents is used to change the surface characteristics of metals. In contrast, the surface characteristics of graphene, a material which consists of a single atomic layer of hexagonally bonded carbon atoms, can be dynamically tuned while preserving the superb properties of graphene. This is due to the atomically-thin nature and unique properties of graphene. This project studies tunable surface characteristics of graphene to enable a novel and multi-functional coating material. The capacity to dynamically tune the surface characteristics of graphene can be used to advance corrosion and oxidation resistant coating, sensing, condensation heat transfer, battery and supercapacitator efficiency, and microfluidics. These improvements increase productivity and reduce costs in the energy, manufacturing, and health sectors. In addition, the new knowledge and broader implications realized in this project offer an excellent educational opportunity to enhance community engagement and outreach in the exciting and growing field of nanotechnology. Specific avenues for dissemination include online learning platforms, summer research experiences for students, and field trips and summer science camps for high-school students.Technical Description: Graphene, which consists of fully saturated and chemically inert sp2-hybridized carbon atoms, senses and interacts with external molecules in close vicinity via delocalized pi electrons. Unlike conventional bulk materials, external molecules can modulate the doping levels of graphene by interacting with these delocalized, massless Dirac fermions. Likewise, the modulation of doping levels can in turn affect the way graphene reacts with external molecules. The objective of this project is to establish a fundamental understanding of electrical doping-induced tunable surface energy and reactivity of graphene to address the knowledge gap concerning the coupling between graphene's electronic states and its surface energy/reactivity. The principal investigators' hypothesis is that the modulation of graphene's electron state by doping contributes to the tunable electrostatic force which graphene exerts on external molecules, and in turn impacts the tunable surface energy and reactivity of graphene. The research combines in situ experimental investigations with quantum and atomistic theoretical modeling. In situ microscopy, such as atomic force microscopy and electron microscopy, as well as spectroscopic characterizations, including Raman spectroscopy and X-ray photoelectron spectroscopy, are performed to experimentally investigate how doping influences the surface energy and reactivity of graphene. Furthermore, theoretical investigations, including detailed quantum, atomistic and reactive molecular dynamics calculations, are performed to complement and explain experimental finding of doping-induced surface energy/reactivity, while the experimentally obtained parameters are used to develop a comprehensive theory for the prediction and development of new surface phenomena. This project advances the scientific knowledge of how modulation of doping levels affect graphene's reaction to external molecules as well as improves the technical capability of tunable surface characteristics of graphene.
非技术描述:通常,在不干扰材料固有特性的情况下,传统材料的表面特性是无法改变的。例如,化学处理被用来改变半导体的表面特性,连续的电流被用来改变金属的表面特性。相比之下,石墨烯(由六方键合碳原子组成的单原子层)的表面特性可以动态调整,同时保持石墨烯的优异性能。这是由于石墨烯的原子薄性质和独特的性能。本项目研究石墨烯的可调表面特性,以实现一种新型多功能涂层材料。动态调整石墨烯表面特性的能力可用于推进抗腐蚀和抗氧化涂层、传感、冷凝传热、电池和超级电容器效率以及微流体。这些改进提高了能源、制造业和卫生部门的生产率并降低了成本。此外,在这个项目中获得的新知识和更广泛的影响提供了一个很好的教育机会,以加强社区参与和推广令人兴奋和不断发展的纳米技术领域。具体的传播途径包括在线学习平台、学生暑期研究体验、高中生实地考察和暑期科学营。技术描述:石墨烯由完全饱和和化学惰性的sp2杂化碳原子组成,通过离域π电子感知附近的外部分子并与之相互作用。与传统的块状材料不同,外部分子可以通过与这些离域的、无质量的狄拉克费米子相互作用来调节石墨烯的掺杂水平。同样,掺杂水平的调节反过来会影响石墨烯与外部分子的反应方式。该项目的目标是建立对电掺杂诱导的石墨烯可调表面能和反应性的基本理解,以解决石墨烯电子态与其表面能/反应性之间耦合的知识空白。主要研究人员的假设是,通过掺杂对石墨烯电子状态的调制有助于石墨烯对外部分子施加可调静电力,从而影响石墨烯的可调表面能和反应性。该研究将原位实验研究与量子和原子理论建模相结合。通过原位显微镜(如原子力显微镜和电子显微镜)以及光谱表征(包括拉曼光谱和x射线光电子能谱)来实验研究掺杂如何影响石墨烯的表面能和反应性。此外,还进行了理论研究,包括详细的量子、原子和反应分子动力学计算,以补充和解释掺杂诱导的表面能/反应性的实验发现,而实验获得的参数用于发展预测和发展新的表面现象的综合理论。该项目推进了掺杂水平调节如何影响石墨烯与外部分子反应的科学知识,并提高了石墨烯可调表面特性的技术能力。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Current understanding and emerging applications of 3D crumpling mediated 2D material-liquid interactions
- DOI:10.1016/j.cossms.2020.100836
- 发表时间:2020-06
- 期刊:
- 影响因子:11
- 作者:P. Snapp;M. Heiranian;M. T. Hwang;R. Bashir;N. Aluru;Sungwoo Nam
- 通讯作者:P. Snapp;M. Heiranian;M. T. Hwang;R. Bashir;N. Aluru;Sungwoo Nam
Colloidal Photonic Crystal Strain Sensor Integrated with Deformable Graphene Phototransducer
- DOI:10.1002/adfm.201902216
- 发表时间:2019-08-01
- 期刊:
- 影响因子:19
- 作者:Snapp, Peter;Kang, Pilgyu;Nam, SungWoo
- 通讯作者:Nam, SungWoo
Molecular Dynamics Properties without the Full Trajectory: A Denoising Autoencoder Network for Properties of Simple Liquids
- DOI:10.1021/acs.jpclett.9b02820
- 发表时间:2019-12-19
- 期刊:
- 影响因子:5.7
- 作者:Moradzadeh, Alireza;Aluru, N. R.
- 通讯作者:Aluru, N. R.
Uniaxially crumpled graphene as a platform for guided myotube formation
- DOI:10.1038/s41378-019-0098-6
- 发表时间:2019-11-04
- 期刊:
- 影响因子:7.9
- 作者:Kim, Junghoon;Leem, Juyoung;Nam, SungWoo
- 通讯作者:Nam, SungWoo
Transfer-Learning-Based Coarse-Graining Method for Simple Fluids: Toward Deep Inverse Liquid-State Theory
- DOI:10.1021/acs.jpclett.8b03872
- 发表时间:2019-03-21
- 期刊:
- 影响因子:5.7
- 作者:Moradzadeh, Alireza;Aluru, Narayana R.
- 通讯作者:Aluru, Narayana R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Narayana Aluru其他文献
Combining Physics-Based and Evolution-Based Methods to Design Antibodies Against an Evolving Virus
- DOI:
10.1016/j.bpj.2019.11.2669 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Eric Jakobsson;Amir Barati Farimani;Emad Tajkhorshid;Narayana Aluru - 通讯作者:
Narayana Aluru
A Stacked Graphene-Al2O3 Nanopore Architecture for DNA Detection
- DOI:
10.1016/j.bpj.2011.11.3959 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Shouvik Banerjee;B. Murali Venkatesan;David Estrada;Xiaozhong Jin;Vincent Dorgan;Vita Solovyeva;Myung-Ho Bae;Narayana Aluru;Eric Pop;Rashid Bashir - 通讯作者:
Rashid Bashir
Narayana Aluru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Narayana Aluru', 18)}}的其他基金
Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach
合作研究:美国-爱尔兰 R
- 批准号:
2137157 - 财政年份:2022
- 资助金额:
$ 37.68万 - 项目类别:
Standard Grant
Intrinsic and Extrinsic Losses in Nanoelectromechanical Systems
纳米机电系统的内在和外在损耗
- 批准号:
1506619 - 财政年份:2015
- 资助金额:
$ 37.68万 - 项目类别:
Standard Grant
PIRE: Integrated Computational Materials Engineering for Active Materials and Interfaces in Chemical Fuel Production
PIRE:化学燃料生产中活性材料和界面的集成计算材料工程
- 批准号:
1545907 - 财政年份:2015
- 资助金额:
$ 37.68万 - 项目类别:
Continuing Grant
AF: Small: Density Estimation and Uncertainty Propagation in Complex Systems
AF:小:复杂系统中的密度估计和不确定性传播
- 批准号:
1420882 - 财政年份:2014
- 资助金额:
$ 37.68万 - 项目类别:
Standard Grant
Structure, Dynamics and Transport of Multiphase Fluids
多相流体的结构、动力学和输运
- 批准号:
1264282 - 财政年份:2013
- 资助金额:
$ 37.68万 - 项目类别:
Standard Grant
QMHP: Multiscale Analysis of Coupled Electrical, Mechanical Systems at Nanoscale
QMHP:纳米级耦合电气、机械系统的多尺度分析
- 批准号:
1127480 - 财政年份:2011
- 资助金额:
$ 37.68万 - 项目类别:
Continuing Grant
Transport and Interfacial Phenomena in Boron Nitride Nanotubes
氮化硼纳米管中的传输和界面现象
- 批准号:
0852657 - 财政年份:2009
- 资助金额:
$ 37.68万 - 项目类别:
Standard Grant
AF:Small:Coarse-Grained Algorithms for Soft Matter
AF:Small:软物质的粗粒度算法
- 批准号:
0915718 - 财政年份:2009
- 资助金额:
$ 37.68万 - 项目类别:
Standard Grant
相似海外基金
Cloaking Anisotropic Capillary Interactions Through Tunable Nanoscale Surface Topography
通过可调纳米级表面形貌隐藏各向异性毛细管相互作用
- 批准号:
2232579 - 财政年份:2023
- 资助金额:
$ 37.68万 - 项目类别:
Standard Grant
LEAPS-MPS: Surface Morphological Effect on Biomolecular Attachment to Responsive Microgels for Tunable Biomimetic 3D-Cell Culture Scaffolds
LEAPS-MPS:表面形态对可调仿生 3D 细胞培养支架的响应性微凝胶生物分子附着的影响
- 批准号:
2137578 - 财政年份:2022
- 资助金额:
$ 37.68万 - 项目类别:
Standard Grant
GraSP_Graphene Surface Plasmons for Tunable Cavity Quantum Electrodynamics
GraSP_石墨烯表面等离子体用于可调谐腔量子电动力学
- 批准号:
378579271 - 财政年份:2017
- 资助金额:
$ 37.68万 - 项目类别:
Research Grants
Solid State Dye Sensitized Solar Cells Using Tunable Surface Plasmons of Core-Shell Particles
使用核壳粒子可调表面等离子体的固态染料敏化太阳能电池
- 批准号:
1235979 - 财政年份:2012
- 资助金额:
$ 37.68万 - 项目类别:
Standard Grant
Highly Tunable Surface Plasmon Enhanced Optical Transmission Through Periodic Nanostructures
通过周期性纳米结构高度可调表面等离子体增强光传输
- 批准号:
1213582 - 财政年份:2012
- 资助金额:
$ 37.68万 - 项目类别:
Standard Grant
Manufacturable and reliable electrically pumped micro-electromechanically tunable vertical cavity surface emitting lasers for low-cost ophthalmic swept source optical coherence tomography
可制造且可靠的电泵微机电可调谐垂直腔表面发射激光器,用于低成本眼科扫频源光学相干断层扫描
- 批准号:
9348365 - 财政年份:2012
- 资助金额:
$ 37.68万 - 项目类别:
Generation of nanoparticels with tunable surface wettability and surface functionalitiy to cross hydrophilic/hydrophobic interfaces of biological barriers
生成具有可调节表面润湿性和表面功能的纳米粒子,以穿过生物屏障的亲水/疏水界面
- 批准号:
87508142 - 财政年份:2009
- 资助金额:
$ 37.68万 - 项目类别:
Research Grants
Surface characterization of iron silicides by energy tunable X-ray excited photoelectron spectroscopy
能量可调 X 射线激发光电子能谱表征硅化铁的表面
- 批准号:
21560765 - 财政年份:2009
- 资助金额:
$ 37.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Resonant Surface Plasmon Spectroscopy by Tunable Enhanced Light Transmission Through Nanostructured Gratings
通过纳米结构光栅可调谐增强光传输的共振表面等离子体光谱
- 批准号:
0809509 - 财政年份:2008
- 资助金额:
$ 37.68万 - 项目类别:
Continuing Grant
SEMICONDUCTOR SURFACE PLASMONS: A ROUTE TO TUNABLE THZ DEVICES AND SENSORS
半导体表面等离子体激元:可调谐太赫兹器件和传感器的途径
- 批准号:
EP/F026757/1 - 财政年份:2008
- 资助金额:
$ 37.68万 - 项目类别:
Research Grant