CAREER: Dynamics and thermodynamics of ultra-strong glassformers

职业:超强玻璃形成剂的动力学和热力学

基本信息

  • 批准号:
    2143815
  • 负责人:
  • 金额:
    $ 65.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).NON-TECHNICAL SUMMARYThis CAREER award supports an integrated program of theoretical research, computational study, and educational activity on a novel type of disordered solids, ``ultra-strong glasses''. What makes a material a solid? Crystalline materials have their atoms and molecules organized into neatly repeating patterns -- breaking up these repeating patterns costs energy, and the result is a material that resists deformation, that is, one that is solid. Glassy materials -- which can be made from silica as in ordinary window glass but also many other polymeric, molecular, or colloidal liquids -- are quite different: unlike orderly crystals their components are disordered, and their viscosity can vary enormously when their temperature is varied very slightly. These materials start out looking and behaving like a liquid but quickly become more and more sluggish as the temperature is decreased until, eventually, their motion is so imperceptible and the time for the molecules to flow around each other is so long that the whole system acts like a solid rather than a liquid.Almost all disordered materials follow two characteristic patterns for the precise way that their dynamics slow down, leading to a categorization of glasses as either "fragile" or "strong." Very recently there has been evidence of a third type of glass, an “ultra-strong” glass, whose dynamics and material properties would be much less sensitive to changing temperature than strong or fragile glasses. This unusual type of glass has, so far, been observed in two seemingly disconnected systems: computational models of dense epithelial tissue (tissue that covers all body surfaces and line body cavities) and of low-density vitrimers (a type of plastic material). At present there is no theoretical understanding of why these very different materials systems share similar glassy dynamics, or why either of them have properties so different from usual glassy materials in the first place.To understand this new class of materials -- which will itself help enable strategies for the design of new engineered materials with the unusual properties that the computational models suggest – the PI will embark on a systematic combination of extensive computational modeling together with an effort to build a theoretical description of ultra-strong glasses. At its core, this research seeks to address two primary questions: 1.) What is the fundamental nature of an ultra-strong glass? 2.) What features of a physical system lead to it?This project also supports educational and outreach activities that are closely integrated with the research project. The computational work involves large-scale numerical simulations, and the PI will develop Graphical User Interfaces that allow these research tools to be easily used in classes that are part of both the undergraduate and graduate curriculum. The PI and his research group will engage in community outreach activities, including mentorship activities at local schools and public science talks aimed at promoting awareness of the role STEM (Science, Technology, Engineering, and Mathematics) research plays in materials that appear in the everyday world around us. The PI, as part of his commitment to broadening participation of underrepresented groups in the physical sciences, will continue his work interacting with and mentoring students at a Minority Serving Institution, engaging those students in active research, and encouraging them to see themselves as future STEM professionals.TECHNICAL SUMMARYThis CAREER award supports theoretical and computational research on a novel class of disordered solids, ultra-strong glassformers. Ultra-strong behavior has recently been observed in two seemingly unrelated computational models: the PI's study of a coarse-grained model of dense biological tissue, and another group's study of low-density vitrimers. A primary research goal is to understand the origin of this anomalous type of disordered dynamics. The project will systematically explore numerical simulations of a family of related models at low temperature, using numerical analyses to test whether existing theories of glassy dynamics can make accurate predictions when confronted with data from these unusual systems. In this way, the underlying assumptions and validity of the approximations of many theories for glassy behavior can be probed; the focus of these tests will be on predicted connections between local structure, thermodynamics, and mechanics on the one hand and system dynamics on the other.An important quantity for characterizing a given glassy system (both intellectually, and in determining the functionality and processing of glasses as materials) is the fragility index. Until recently the fragility index characterized all glassy systems as either strong or fragile, corresponding to exponential or super-exponential scaling of the alpha relaxation time with inverse temperature. These categorizes also harmonize with recent theoretical work on mean-field models which describe the behavior of structural glasses in the infinite-dimensional limit, but this categorization is challenged by anomalous behavior of ultra-strong glasses and their remarkable, sub-exponential dependence of their alpha relaxation time with inverse temperature.There is no current understanding of what microscopic aspects of the models studied lead to this anomalous behavior, and thus it is unclear if ultra-strong glassforming ability can be found or engineered in a much broader class of physical systems. To address this need, the research will use large-scale simulations, extensive numerical analysis, and theoretical tools from the study of disordered solids to uncover the origin of ultra-strong behavior in the generalized class of vertex and Voronoi models of dense cellular matter. A fundamental set of model components that lead to this type of anomalous glassy behavior will be proposed, allowing for new ultra-strong glassformers to be identified and investigated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的部分资助根据《2021 年美国救援计划法案》(公法 117-2)进行。非技术摘要该职业奖支持针对新型无序固体“超强玻璃”的理论研究、计算研究和教育活动的综合项目。是什么使材料成为固体?晶体材料的原子和分子组织成整齐的重复图案——打破这些重复图案需要能量,结果是一种抗变形的材料,即固体。玻璃状材料——可以像普通窗玻璃一样由二氧化硅制成,也可以由许多其他聚合、分子或胶体液体制成——有很大不同:与有序晶体不同,它们的成分是无序的,当温度变化非常微小时,它们的粘度可能会发生巨大变化。这些材料一开始看起来和表现得像液体,但随着温度的降低,它们很快变得越来越迟缓,直到最终它们的运动变得难以察觉,而且分子彼此流动的时间很长,以至于整个系统的行为就像固体而不是液体。几乎所有无序材料都遵循两种特征模式,其动力学减慢的精确方式,导致玻璃被分类为“易碎”或“坚固”。最近有证据表明存在第三种类型的玻璃,即“超强”玻璃,其动力学和材料特性对温度变化的敏感度远低于强玻璃或易碎玻璃。到目前为止,这种不寻常的玻璃类型已在两个看似互不相关的系统中观察到:致密上皮组织(覆盖所有身体表面和线状体腔的组织)和低密度玻璃体(一种塑料材料)的计算模型。目前,对于为什么这些非常不同的材料系统具有相似的玻璃态动力学,或者为什么它们中的任何一个具有与通常的玻璃态材料如此不同的特性,目前还没有理论上的理解。为了理解这种新型材料——这本身将有助于实现具有计算模型所表明的不寻常特性的新型工程材料的设计策略——PI将着手将广泛的计算模型系统地结合起来,并努力建立超强材料的理论描述。 眼镜。这项研究的核心是解决两个主要问题:1.) 超强玻璃的基本性质是什么? 2.) 物理系统的哪些特征导致了它?该项目还支持与研究项目紧密结合的教育和外展活动。计算工作涉及大规模数值模拟,PI 将开发图形用户界面,使这些研究工具能够在本科生和研究生课程的课程中轻松使用。 PI 和他的研究小组将参与社区外展活动,包括当地学校的辅导活动和公共科学讲座,旨在提高人们对 STEM(科学、技术、工程和数学)研究在我们周围日常生活材料中所扮演的角色的认识。作为扩大物理科学领域代表性不足群体参与承诺的一部分,PI 将继续与少数族裔服务机构的学生互动和指导,让这些学生参与积极的研究,并鼓励他们将自己视为未来的 STEM 专业人士。 技术摘要 该职业奖支持对一类新型无序固体、超强玻璃形成体的理论和计算研究。最近在两个看似无关的计算模型中观察到了超强行为:PI 对致密生物组织的粗粒度模型的研究,以及另一组对低密度 vitrimer 的研究。主要研究目标是了解这种异常类型的无序动力学的起源。该项目将系统地探索一系列相关模型在低温下的数值模拟,利用数值分析来测试现有的玻璃态动力学理论在面对这些不寻常系统的数据时是否能够做出准确的预测。通过这种方式,可以探究许多玻璃行为理论的基本假设和近似的有效性;这些测试的重点将一方面放在局部结构、热力学和力学之间的预测联系,另一方面放在系统动力学之间的预测联系上。表征给定玻璃系统的一个重要量(无论是在智力上,还是在确定玻璃作为材料的功能和加工方面)是脆性指数。直到最近,脆性指数将所有玻璃态系统描述为强或脆,对应于 α 弛豫时间与温度倒数的指数或超指数缩放。这些分类也与最近关于平均场模型的理论工作相一致,平均场模型描述了结构玻璃在无限维极限下的行为,但这种分类受到超强玻璃的异常行为及其α弛豫时间与反温度的显着的次指数依赖性的挑战。目前尚不清楚所研究的模型的哪些微观方面导致了这种异常行为,因此它是 目前还不清楚是否可以在更广泛的物理系统中找到或设计超强的玻璃形成能力。为了满足这一需求,该研究将使用大规模模拟、广泛的数值分析和无序固体研究的理论工具来揭示密集细胞物质的广义顶点类和 Voronoi 模型中超强行为的起源。将提出导致这种类型的异常玻璃行为的一组基本模型组件,从而允许识别和研究新的超强玻璃形成剂。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Sussman其他文献

Use of Large Language Models to Identify Surveillance Colonoscopy Intervals—A Feasibility Study
使用大型语言模型来确定监测结肠镜检查间隔——一项可行性研究
  • DOI:
    10.1053/j.gastro.2024.09.032
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    25.100
  • 作者:
    Vedant Acharya;Vignesh Kumaresan;Jonathan England;Shivan Mehta;Daniel Sussman;Amar Deshpande
  • 通讯作者:
    Amar Deshpande
Su1667 – Increasing Uptake of Colon Cancer Screening in a Medically Underserved Population with the Addition of Blood-Based Testing
  • DOI:
    10.1016/s0016-5085(19)38405-7
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stephanie Ioannou;Kyle Sutherland;Rahul Iyengar;Theo deVos;Daniel Sussman;Amar Deshpande
  • 通讯作者:
    Amar Deshpande
EUS with EMR of an inflammatory myofibroblastic tumor of the stomach
  • DOI:
    10.1016/j.gie.2007.06.031
  • 发表时间:
    2008-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    S. Mubashir Shah;Daniel Sussman;Merce Jorda;Afonso Ribeiro
  • 通讯作者:
    Afonso Ribeiro
Sa1853 – Pseudopolyps in Inflammatory Bowel Disease: Histologic Description in the New Era of Mucosal Healing
  • DOI:
    10.1016/s0016-5085(19)37919-3
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mona Rezapour;Oriana M. Damas;Amar Deshpande;David H. Kerman;Maria A. Quintero;Nidah S. Khakoo;Daniel Sussman;Maria T. Abreu
  • 通讯作者:
    Maria T. Abreu
Sa1144 CONCONDANCE BETWEEN SOMATIC AND GERMLINE MUTATION IN PANCREATIC CANCER
  • DOI:
    10.1016/s0016-5085(20)31417-7
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tara Keihanian;Ryan M. Dauer;Pamela J. Leone;Carlos R. Diaz;Daniel Sussman
  • 通讯作者:
    Daniel Sussman

Daniel Sussman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Mechanisms of HIV fitness and drug resistance inferred from high-resolution molecular dynamics and sequence co-variation models
从高分辨率分子动力学和序列共变模型推断出 HIV 适应性和耐药性的机制
  • 批准号:
    10750627
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
Development and application of a quantitive model for HIV-1 transcriptional activation driven by TAR RNA conformational dynamics
TAR RNA构象动力学驱动的HIV-1转录激活定量模型的开发和应用
  • 批准号:
    10750552
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
Modulating Fibrinolysis Dynamics by Leveraging Multivalent Avidity to Control Enzyme Activity
通过利用多价亲和力控制酶活性来调节纤维蛋白溶解动力学
  • 批准号:
    10635496
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
Acquisition of Unix Computer Cluster for Molecular Dynamics Simulation Calculations
购置 Unix 计算机集群用于分子动力学模拟计算
  • 批准号:
    10799081
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
Structure, Dynamics and Thermodynamics of Biomolecules
生物分子的结构、动力学和热力学
  • 批准号:
    2751490
  • 财政年份:
    2022
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Studentship
The landscape of NFκB transcription dynamics
NFκB 转录动力学景观
  • 批准号:
    10444634
  • 财政年份:
    2022
  • 资助金额:
    $ 65.64万
  • 项目类别:
Tackling Multifaceted Drug Design Problems with Lambda Dynamics Based Technologies
利用基于 Lambda Dynamics 的技术解决多方面的药物设计问题
  • 批准号:
    10709879
  • 财政年份:
    2022
  • 资助金额:
    $ 65.64万
  • 项目类别:
Mapping the sequence landscape of RNA structure, dynamics and protein interactions using high-throughput single-molecule FRET
使用高通量单分子 FRET 绘制 RNA 结构、动力学和蛋白质相互作用的序列图谱
  • 批准号:
    10707257
  • 财政年份:
    2022
  • 资助金额:
    $ 65.64万
  • 项目类别:
Dynamics and Thermodynamics of Nanoscale Systems
纳米系统的动力学和热力学
  • 批准号:
    2127900
  • 财政年份:
    2022
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Continuing Grant
Dynamics and Thermodynamics of Neutron-Rich Nuclear Matter
富中子核物质的动力学和热力学
  • 批准号:
    2209318
  • 财政年份:
    2022
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了