CAREER: Toward A Knowledge-Guided Framework for Personalized Decision Making
职业:走向个性化决策的知识引导框架
基本信息
- 批准号:2144209
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Learning causality from data is a vital stepping stone toward building human-level intelligent systems that can make appropriate decisions. In seeking to make an optimal decision for each individual (i.e., personalized decision making), we need to understand the causal relationship between a decision and its consequent outcome. Causal inference provides a principled way to achieve personalized decision making by learning individual-level causal effects from observational data. Its impacts are seen in a broad spectrum of application domains. However, existing causal inference frameworks are mostly data-driven and face multifaceted challenges (at the assumption-, data-, and application-level) when applied in real-world observational studies. Despite that, a vast amount of prior human knowledge manifests itself in different ways and could be leveraged to tackle these challenges. Although abundant human knowledge provides great opportunities, its complex nature coupled with observational data also imposes tremendous hurdles. This project aims to bridge the gap between what can be accessed (i.e., a large amount of observational data across different domains and human knowledge in different formats) and what is desired (i.e., more effective causal inference to advance personalized decision making).This project develops a suite of novel causal inference models and algorithms to analyze observational data by harnessing the power of human knowledge and gaining deeper insights to advance personalized decision making. First, it leverages relational knowledge that describes the relations among data instances in observational data, investigates its role in relaxing overly optimistic assumptions for causal inference. Second, it explores meta knowledge that depicts distinct properties of observational data and develops principled causal inference models and algorithms to incorporate such knowledge. Third, it aims to improve the utility of existing data-driven causal inference frameworks by harnessing application knowledge, which characterizes the unique needs of real-world applications. The outcomes of this project will enable researchers and practitioners to assimilate massive amounts of observational data, across numerous application domains, and leverage abundant human knowledge, to benefit scientific discovery and informed decision making. Outcomes of this project will be integrated into the existing curricula and new courses. This project will also provide research opportunities to undergraduate and graduate students, especially female and underrepresented minorities. Customized research and teaching components will be designed and implemented to attract K-12 students in STEM education and engage them in causal inference and data science research. Last but not least, this project will improve student success and retention via a unique educational decision making component. This approach will optimize current education systems, for the benefit of generations of students to come.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。从数据中学习因果关系是构建能够做出适当决策的人类智能系统的重要基石。在寻求为每个个体做出最佳决策(即个性化决策)时,我们需要了解决策与其结果之间的因果关系。因果推理提供了一种原则性的方法,通过从观察数据中学习个人层面的因果效应来实现个性化决策。它的影响可以在广泛的应用领域中看到。然而,现有的因果推理框架大多是数据驱动的,在应用于现实世界的观察研究时面临多方面的挑战(在假设、数据和应用层面)。尽管如此,大量先前的人类知识以不同的方式表现出来,可以用来应对这些挑战。尽管丰富的人类知识提供了巨大的机会,但其复杂性加上观测数据也带来了巨大的障碍。该项目旨在弥合可访问的内容(即,跨越不同领域的大量观测数据和不同格式的人类知识)与期望的内容(即,更有效的因果推理以推进个性化决策)之间的差距。该项目开发了一套新颖的因果推理模型和算法,通过利用人类知识的力量来分析观测数据,并获得更深入的见解,以推进个性化决策。首先,它利用描述观测数据中数据实例之间关系的关系知识,研究其在放松过度乐观的因果推理假设中的作用。其次,它探索描述观测数据的不同属性的元知识,并开发原则性的因果推理模型和算法来整合这些知识。第三,它旨在通过利用应用知识来提高现有数据驱动的因果推理框架的效用,这些应用知识表征了现实世界应用的独特需求。该项目的成果将使研究人员和从业人员能够吸收大量观测数据,跨越众多应用领域,并利用丰富的人类知识,有利于科学发现和知情决策。该项目的成果将整合到现有课程和新课程中。该项目还将为本科生和研究生,特别是女性和代表性不足的少数民族提供研究机会。定制的研究和教学组件将被设计和实施,以吸引K-12学生参与STEM教育,并让他们参与因果推理和数据科学研究。最后但并非最不重要的是,这个项目将通过一个独特的教育决策组件来提高学生的成功和保留率。这种方法将优化当前的教育系统,造福未来几代学生。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Federated Few-shot Learning
- DOI:10.1145/3580305.3599347
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Song Wang;Xingbo Fu;Kaize Ding;Chen Chen-Chen;Huiyuan Chen;Jundong Li
- 通讯作者:Song Wang;Xingbo Fu;Kaize Ding;Chen Chen-Chen;Huiyuan Chen;Jundong Li
Fairness in Graph Mining: A Survey
- DOI:10.1109/tkde.2023.3265598
- 发表时间:2022-04
- 期刊:
- 影响因子:8.9
- 作者:Yushun Dong;Jing Ma;Song Wang;Chen Chen-Chen;Jundong Li
- 通讯作者:Yushun Dong;Jing Ma;Song Wang;Chen Chen-Chen;Jundong Li
Interpreting Unfairness in Graph Neural Networks via Training Node Attribution
通过训练节点归因解释图神经网络中的不公平性
- DOI:10.1609/aaai.v37i6.25905
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Dong, Yushun;Wang, Song;Ma, Jing;Liu, Ninghao;Li, Jundong
- 通讯作者:Li, Jundong
Few-shot Node Classification with Extremely Weak Supervision
- DOI:10.1145/3539597.3570435
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Song Wang;Yushun Dong;Kaize Ding;Chen Chen-Chen;Jundong Li
- 通讯作者:Song Wang;Yushun Dong;Kaize Ding;Chen Chen-Chen;Jundong Li
Transductive Linear Probing: A Novel Framework for Few-Shot Node Classification
- DOI:10.48550/arxiv.2212.05606
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Zhen Tan;Song Wang;Kaize Ding;Jundong Li;Huan Liu
- 通讯作者:Zhen Tan;Song Wang;Kaize Ding;Jundong Li;Huan Liu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jundong Li其他文献
Online Collaborative Filtering with Implicit Feedback
具有隐式反馈的在线协同过滤
- DOI:
10.1007/978-3-030-18579-4_26 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jianwen Yin;Chenghao Liu;Jundong Li;Bingtian Dai;Yun;Min Wu;Jianling Sun - 通讯作者:
Jianling Sun
Anlotinib combined with pemetrexed as a further treatment of patients with platinum-resistant ovarian cancer: A single-arm, open-label, phase II study
- DOI:
10.1016/s0090-8258(21)00758-7 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:
- 作者:
Jueming Chen;Wei Wei;Lie Zheng;Han Li;Yanling Feng;Ting Wan;Jiaqi Qiu;Xingyu Jiang;Ying Xiong;Jundong Li;He Huang;Libing Song;Jihong Liu;Yanna Zhang - 通讯作者:
Yanna Zhang
Synthesis of β-prolinols via [3+2] cycloaddition and one-pot programmed reduction: Valuable building blocks for polyheterocycles
通过[3 2]环加成和一锅程序还原合成β-脯氨醇:有价值的多杂环构建模块
- DOI:
10.1016/j.tetlet.2016.11.035 - 发表时间:
2016-12 - 期刊:
- 影响因子:0
- 作者:
Jundong Li;Na Lin;Lei Yu;Y;ong Zhang - 通讯作者:
ong Zhang
LookCom: Learning Optimal Network for Community Detection
LookCom:学习用于社区检测的最佳网络
- DOI:
10.1109/tkde.2020.2987784 - 发表时间:
2022-02 - 期刊:
- 影响因子:8.9
- 作者:
Yixiang Dong;Minnan Luo;Jundong Li;Deng Cai;Qinghua Zheng - 通讯作者:
Qinghua Zheng
PyGDebias: A Python Library for Debiasing in Graph Learning
PyGDebias:用于图学习中去偏的 Python 库
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yushun Dong;Zhenyu Lei;Zaiyi Zheng;Song Wang;Jing Ma;Alex Jing Huang;Chen Chen;Jundong Li - 通讯作者:
Jundong Li
Jundong Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jundong Li', 18)}}的其他基金
Travel: SDM 2024 Doctoral Forum Student Travel Grant
旅行:SDM 2024 博士论坛学生旅行补助金
- 批准号:
2400368 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Graph-Oriented Usable Interpretation
合作研究:III:小型:面向图形的可用解释
- 批准号:
2223769 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SAI-R: Dynamical Coupling of Physical and Social Infrastructures: Evaluating the Impacts of Social Capital on Access to Safe Well Water
合作研究:SAI-R:物理和社会基础设施的动态耦合:评估社会资本对获得安全井水的影响
- 批准号:
2228534 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Demystifying Deep Learning on Graphs: From Basic Operations to Applications
III:小:协作研究:揭秘图深度学习:从基本操作到应用
- 批准号:
2006844 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
相似海外基金
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
- 批准号:
24K20834 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Optimizing Meeting Member Composition through Collective Knowledge: Toward the Integration of Collective Knowledge, Democracy Theory, and Public Policy
通过集体知识优化会议成员的构成:走向集体知识、民主理论和公共政策的整合
- 批准号:
23K12410 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Toward reducing the conflicts between native cormorants and local residents -- Knowledge discovery from historical records by using temporal information analysis
减少本土鸬鹚与当地居民之间的冲突——利用时态信息分析从历史记录中发现知识
- 批准号:
20H04381 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bridging between Knowledge and Life through the inquiry into "Recognition" —Toward the Construction of Epistemology of Education—
通过对“认知”的探究,架起知识与生活的桥梁
- 批准号:
20J21638 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Toward the Establishment of a Reciprocal Knowledge Exchange Community for Extending BPC Capacity and Impact
致力于建立互惠的知识交流社区,以扩大 BPC 的能力和影响力
- 批准号:
1747533 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
The Becoming of Shared Knowledge through Recollection and Oblivion: Toward a Development of Sociological Theory of Knowledge
通过回忆和遗忘形成共享知识:知识社会学理论的发展
- 批准号:
17J07319 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A Study on Extraction of Potential Knowledge Oriented toward "Local Community Revitalization Design" by Text Mining
文本挖掘面向“本土社区振兴设计”潜在知识提取研究
- 批准号:
16K00713 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Assessing the influence of extensive reading in English on learners' reading, vocabulary knowledge, and attitude toward English and English learning
评估英语泛读对学习者阅读、词汇知识、英语态度和英语学习的影响
- 批准号:
26370721 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding the catalytic performance of rare-earth oxides: Toward a knowledge-driven design of catalysts from first-principles calculations
了解稀土氧化物的催化性能:从第一原理计算转向知识驱动的催化剂设计
- 批准号:
258763616 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Research Grants
The study of the importance for kanji reading proficiency in the Japanese lexical knowledge -Toward an application to the online test-
日语词汇知识中汉字阅读能力重要性的研究-面向在线测试的应用-
- 批准号:
26580095 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research