CAREER: Transforming Biosensor Reliability using Sensor Time-series Data and Physics-based Machine Learning

职业:使用传感器时间序列数据和基于物理的机器学习改变生物传感器的可靠性

基本信息

项目摘要

Access to reliable biosensors could transform public health by aiding ongoing and future pandemic management. However, biosensor reliability (e.g. false positive (type 1) and false negative(type 2) diagnoses) remains a barrier to widespread industrial and clinical use. Preliminary work performed in the Investigator’s lab suggests that using biosensor time series (TS) data and physics-based supervised Machine Learning (ML), a form of artificial intelligence that makes predictions from data, can reduce the probability of these errors. Thus, the research goal of this CAREER project is to examine the integration of machine learning and chemical engineering domain knowledge for improving biosensor reliability and performance. The proposed methodology will be applied across various sensor types, sizes, form factors, and data structures. If successful, access to reliable biosensors could catalyze biomanufacturing innovations and improve the speed and accuracy of current and emerging diagnostic methods. The education goal of this project is to create an interactive Open Course Ware (OCW) platform to increase education and workforce development opportunities at the interface of healthcare and data sciences for urban-underserved students. Planned activities include Gaming-driven Simulations in Biosensing for High School Students, a Virtual Lecture and Workshop on Data Archiving for Sensor Machine Learning for Undergraduate Students and Virtual Lectures on Emerging Applications of Machine Learning in the Bioanalytical, Life, and Materials Sciences for High School and Undergraduate Students. The investigator’s overarching career goal is to help transform biosensor performance through concepts in data-driven chemical engineering and expand the leadership of underrepresented groups in emerging data-driven life sciences industries. In keeping with this goal, the objective of this project is to transform the reliability of biosensors through the integration of physiochemical process modeling and supervised ML. The central approach is to integrate supervised machine learning and mass transfer-limited surface binding reaction theory for improving the reliability of bioanalyte quantification via biosensor time-series data. This project will test the hypothesis that integrating experimental parameters and mass transfer-limited surface binding reaction theory with supervised machine learning models for target analyte classification can reduce the extent of type 1 and 2 errors relative to state-of-the-art calibration methods. The proposed methodology will be applied to reliable biosensor-based detection of RNA, microRNA, and protein targets and benchmarked against standard clinical bioanalytical methods. This work will identify new data- and model-driven features of target binding, nonspecific binding, and biosensor drift in biosensor time-series data that can support the reliable classification of bioanalyte concentration using machine learning. If successful, identifying features of target binding and interfering inputs in biosensor time-series data could significantly improve the reliability and reproducibility of biosensors and biosensor-based controls.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
获得可靠的生物传感器可以通过帮助当前和未来的流行病管理来改变公共卫生。 然而,生物传感器的可靠性(例如假阳性(1型)和假阴性(2型)诊断)仍然是广泛的工业和临床应用的障碍。 在研究者实验室进行的初步工作表明,使用生物传感器时间序列(TS)数据和基于物理的监督机器学习(ML),一种从数据中进行预测的人工智能形式,可以降低这些错误的概率。 因此,该CAREER项目的研究目标是研究机器学习和化学工程领域知识的整合,以提高生物传感器的可靠性和性能。 所提出的方法将应用于各种传感器类型、尺寸、形状因子和数据结构。如果成功,可靠的生物传感器可以促进生物制造创新,并提高当前和新兴诊断方法的速度和准确性。 该项目的教育目标是创建一个交互式开放式课程(OCW)平台,以增加城市服务不足学生在医疗保健和数据科学界面上的教育和劳动力发展机会。 计划中的活动包括高中生生物传感中的游戏驱动模拟,本科生传感器机器学习数据处理的虚拟讲座和研讨会,以及高中和本科生生物分析,生命和材料科学中机器学习新兴应用的虚拟讲座。研究者的首要职业目标是通过数据驱动的化学工程概念帮助改变生物传感器性能,并扩大新兴数据驱动的生命科学行业中代表性不足的群体的领导地位。 为了实现这一目标,该项目的目标是通过整合理化过程建模和监督ML来改变生物传感器的可靠性。其核心方法是将监督机器学习和传质限制表面结合反应理论相结合,通过生物传感器时间序列数据提高生物分析物定量的可靠性。 该项目将测试以下假设:将实验参数和传质限制表面结合反应理论与用于目标分析物分类的监督机器学习模型相结合,可以减少相对于最先进的校准方法的1型和2型错误的程度。所提出的方法将应用于可靠的基于生物传感器的RNA、microRNA和蛋白质靶点检测,并以标准临床生物分析方法为基准。这项工作将确定目标结合,非特异性结合和生物传感器时间序列数据中生物传感器漂移的新数据和模型驱动特征,这些特征可以支持使用机器学习对生物分析物浓度进行可靠分类。 如果成功的话,识别生物传感器时间序列数据中的目标结合和干扰输入的特征可以显著提高生物传感器和基于生物传感器的控制的可靠性和再现性。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid, autonomous high-throughput characterization of hydrogel rheological properties via automated sensing and physics-guided machine learning
  • DOI:
    10.1016/j.apmt.2022.101720
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Junru Zhang;Yang Liu;Durga Chandra Sekhar.P;Manjot Singh;Yuxin Tong;Ezgi Kucukdeger;H. Yoon;Alexander P. Haring;M. Roman;Zhenyu Kong;Blake N. Johnson
  • 通讯作者:
    Junru Zhang;Yang Liu;Durga Chandra Sekhar.P;Manjot Singh;Yuxin Tong;Ezgi Kucukdeger;H. Yoon;Alexander P. Haring;M. Roman;Zhenyu Kong;Blake N. Johnson
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Blake Johnson其他文献

“I Am Who I Am Because of Here!”
“我就是因为这里才成为我的!”
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Levine Brown;M. Kanny;Blake Johnson
  • 通讯作者:
    Blake Johnson
Effect of Pass/Fail Grading vs Letter Grading on Pharmacy Students’ Achievement Goal Orientations
  • DOI:
    10.1016/j.ajpe.2023.100296
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Juliette Miller;Beth B. Phillips;Russ Palmer;Michael J. Fulford;Blake Johnson;Devin Lavender;Rebecca Stone
  • 通讯作者:
    Rebecca Stone
Effectiveness of team-focused CPR on in-hospital CPR quality and outcomes
以团队为中心的心肺复苏对院内心肺复苏质量和结果的有效性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    David A. Pearson;Nicole Bensen Covell;Benjamin Covell;Blake Johnson;Cate Lounsbury;Mike Przybysz;Anthony Weekes;Michael Runyon
  • 通讯作者:
    Michael Runyon
Monetary stability and the rule of law
  • DOI:
    10.1016/j.jfs.2014.09.002
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark Koyama;Blake Johnson
  • 通讯作者:
    Blake Johnson
Screening, brief intervention, and referral to treatment among homeless and marginally housed primary-care patients in Skid Row
  • DOI:
    10.1186/1940-0640-7-s1-a58
  • 发表时间:
    2012-10-01
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Lillian Gelberg;Ronald M Andersen;Lisa Arangua;Mani Vahidi;Blake Johnson;Vashti Becerra;Colleen Duro;Steve Shoptaw
  • 通讯作者:
    Steve Shoptaw

Blake Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Blake Johnson', 18)}}的其他基金

Collaborative Research: ISS: Real-time Sensing of Extracellular Matrix Remodeling during Fibroblast Phenotype Switching and Vascular Network Formation in Wound Healing
合作研究:ISS:实时感知成纤维细胞表型转换和伤口愈合中血管网络形成过程中的细胞外基质重塑
  • 批准号:
    2126176
  • 财政年份:
    2022
  • 资助金额:
    $ 54.22万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: High-throughput, Autonomous Real-time Monitoring of Tissue Mechanical Property Change via Impedimetric Sensor Arrays
EAGER/协作研究:通过阻抗传感器阵列高通量、自主实时监测组织机械性能变化
  • 批准号:
    2141008
  • 财政年份:
    2021
  • 资助金额:
    $ 54.22万
  • 项目类别:
    Standard Grant
EAGER: Non-invasive Sensing of Superficial Organ Tissue via Conforming Multi-parametric Microfluidic Organ Biosensors (MMOBs): Shifting the Paradigm for Organ Assessment
EAGER:通过多参数微流控器官生物传感器 (MMOB) 对浅表器官组织进行非侵入式传感:改变器官评估的范式
  • 批准号:
    1650601
  • 财政年份:
    2016
  • 资助金额:
    $ 54.22万
  • 项目类别:
    Standard Grant

相似海外基金

Transforming museum industry to cryopreserve Australia’s diverse wildlife
改造博物馆行业以冷冻保存澳大利亚多样化的野生动物
  • 批准号:
    LP230100359
  • 财政年份:
    2024
  • 资助金额:
    $ 54.22万
  • 项目类别:
    Linkage Projects
Transforming Australian cities through net-zero transit activated corridors
通过净零交通激活走廊改造澳大利亚城市
  • 批准号:
    DE240101072
  • 财政年份:
    2024
  • 资助金额:
    $ 54.22万
  • 项目类别:
    Discovery Early Career Researcher Award
GlycoCell Engineering Biology Mission Hub: Transforming glycan biomanufacture for health
GlycoCell 工程生物学任务中心:转变聚糖生物制造以促进健康
  • 批准号:
    BB/Y008472/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.22万
  • 项目类别:
    Research Grant
Conference: Transforming Trajectories for Women of Color in Tech: A Meeting Series to Develop a Systemic Action Plan
会议:改变有色人种女性在科技领域的轨迹:制定系统行动计划的会议系列
  • 批准号:
    2333305
  • 财政年份:
    2024
  • 资助金额:
    $ 54.22万
  • 项目类别:
    Standard Grant
CAP: AI-Ready Institution Transforming Tomorrow's Research and Education with AI Focused on Health and Security (Jag-AI)
CAP:人工智能就绪机构通过专注于健康和安全的人工智能改变未来的研究和教育 (Jag-AI)
  • 批准号:
    2334243
  • 财政年份:
    2024
  • 资助金额:
    $ 54.22万
  • 项目类别:
    Standard Grant
Planning: Pathways to Transforming Arctic Science Programs
规划:北极科学项目转型之路
  • 批准号:
    2421373
  • 财政年份:
    2024
  • 资助金额:
    $ 54.22万
  • 项目类别:
    Standard Grant
STEMcyclists: Black and Brown Youth Transforming Science and Engineering via Bikes
STEMcyclists:黑人和棕色人种青年通过自行车改变科学和工程
  • 批准号:
    2314260
  • 财政年份:
    2024
  • 资助金额:
    $ 54.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321045
  • 财政年份:
    2024
  • 资助金额:
    $ 54.22万
  • 项目类别:
    Standard Grant
Trust in Pacific Healthcare: Transforming research, policy and practice
对太平洋医疗保健的信任:改变研究、政策和实践
  • 批准号:
    DP230102606
  • 财政年份:
    2024
  • 资助金额:
    $ 54.22万
  • 项目类别:
    Discovery Projects
Transforming child mental health: co-designing, building and evaluating a digitally enabled, personalised, prevention pathway
改变儿童心理健康:共同设计、构建和评估数字化、个性化的预防途径
  • 批准号:
    MR/X034917/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.22万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了