CAREER: Enabling Light-Driven Thermodynamic Cycles

职业:实现光驱动热力循环

基本信息

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2)As an alternative to conventional mechanical systems, the process of light (photon) emission and absorption can be used for refrigeration and conversion of heat into electricity. This is a solid-state approach that can offer significant advantages in applications where size, cost, speed, and reliability are important, such as renewable energy, solid-state refrigeration, and distributed power generation. Though promising, the approach requires exceptional control over light emission and absorption processes to achieve high performance. The goal of this project is to address this technological gap by developing an innovative device, consisting of Inter-Digitated Emitters and Absorbers of Light (IDEAL), that virtually eliminates photon loss and thus bridges the gap relative to theoretical limits. Such devices can leapfrog the limitations of current mechanical processes and enable a societal transition to a clean and sustainable energy system. This project will also introduce the principles of optical thermodynamics to under-resourced schools in metro Detroit and offer workshops that demystify graduate school, thus expanding STEM opportunities to under-represented communities.With advances in manufacturing enabling high-quality photovoltaic materials, the key barrier to high performance in thermo-photonic devices has become the ability to selectively absorb above-bandgap photons, suppress parasitic absorption of luminescent photons, and maintain efficiency at elevated power densities. These shortcomings have resulted in significant efficiency losses relative to thermodynamic limits. This project will address this gap by developing an innovative device concept, named IDEAL, that features interdigitated photovoltaic absorbers and thermal/luminescent emitters. The novelty of the IDEAL approach is that it (1) creates lines of symmetry that act as perfect broadband reflectors and (2) enhances the power density while preserving efficiency. The project will implement the concept in two model material systems to test its generality and map out the coupling between thermal and optoelectronic properties to provide design rules for high performance. The expected result is almost an order of magnitude reduction in photon loss probabilities compared to current performance in photovoltaics and light-emitting diodes, which will yield large gains in the thermodynamic efficiency of thermophotovoltaic power generation and electroluminescent refrigeration. The IDEAL geometry has the added benefit of potentially enabling power densities that are only accessible to near-field approaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(公法117-2)的全部或部分资助的,作为传统机械系统的替代方案,光(光子)排放和吸收过程可用于制冷和热量转化为电力。这是一种固态方法,可以在尺寸,成本,速度和可靠性很重要的应用中具有重要优势,例如可再生能源,固态制冷和分布式发电。尽管很有希望,但该方法需要对光发射和吸收过程进行特殊控制才能实现高性能。该项目的目的是通过开发一种创新的设备来解决这一技术差距,该设备由相互尺寸的发射器和光吸收器组成(理想),从而消除了光子损失,从而弥合了相对于理论限制的差距。这样的设备可以超越当前机械过程的局限性,并使社会过渡到干净,可持续的能源系统。该项目还将在底特律大都会的资源不足的学校中介绍光学动力学的原则,并提供使研究生院脱神经的研讨会,从而扩大了STEM的机会,从而在代表性不足的社区中扩大了STEM的机会。在制造生产方面的进步可以实现高质量的光伏材料,从而在摄影范围内占据了高度良好的抑制能力,可以选择超出热量的能力,以使其成为热量的能力,以使其成为热量的能力,以使其成为热量的能力发光光子的寄生吸收,并保持功率升高的效率。这些缺点导致相对于热力学限制,效率损失很大。该项目将通过开发一个名为Ideal的创新设备概念来解决这一差距,该概念具有相互插入的光伏吸收器和热/发光发射器。理想方法的新颖性在于,它(1)创建了对称线,充当完美的宽带反射器,(2)在保持效率的同时增强了功率密度。该项目将在两个模型材料系统中实现该概念,以测试其通用性,并绘制热和光电属性之间的耦合,以提供高性能的设计规则。与光伏和发光二极管的当前性能相比,预期的结果几乎是光子损失概率的数量级降低,这将在嗜热伏电力产生的热力学效率和电发光的冷冻冷藏的热力学效率方面产生巨大增长。理想的几何形状具有额外的好处,即可能使能量密度仅适用于近场方法。该奖项反映了NSF的法定任务,并且使用基金会的智力优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High albedo daytime radiative cooling for enhanced bifacial PV performance
  • DOI:
    10.1515/nanoph-2023-0611
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Hannah Kim;Yiwei Gao;Ethan Moran;Annyn Howle;Sean McSherry;Spencer Cira;A. Lenert
  • 通讯作者:
    Hannah Kim;Yiwei Gao;Ethan Moran;Annyn Howle;Sean McSherry;Spencer Cira;A. Lenert
Air-Bridge Cells for Higher Emission Temperatures
用于更高发射温度的空气桥电池
Nexus of solar and thermal photovoltaic technology could help solve the energy storage problem
太阳能和热光伏技术的结合有助于解决储能问题
  • DOI:
    10.1016/j.joule.2022.05.015
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    39.8
  • 作者:
    Lenert, Andrej;Forrest, Stephen R.
  • 通讯作者:
    Forrest, Stephen R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrej Lenert其他文献

Andrej Lenert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrej Lenert', 18)}}的其他基金

PFI-TT: Novel Silicon Photovoltaics for Efficient and Low-cost Conversion of Heat to Electricity
PFI-TT:新型硅光伏技术,可高效、低成本地将热能转化为电能
  • 批准号:
    2140694
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Managing light and heat in high power density air-bridge thermophotovoltaics
管理高功率密度空气桥热光伏发电中的光和热
  • 批准号:
    2018572
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
EAGER: Project TPV: An open-source platform for modeling and design of thermophotovoltaics
EAGER:TPV 项目:用于热光伏建模和设计的开源平台
  • 批准号:
    2038441
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Enabling New States of Light in Mid-Wave Infrared Photonics for Gas Sensing Applications
职业:在气体传感应用的中波红外光子学中实现新的光态
  • 批准号:
    2340060
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Two-Color Near-Infrared Fluorescence Guided Surgery Tools Enabling Simultaneous Cancer Margin and Nerve Visualization during Head and Neck Squamous Cell Carcinoma Resection
双色近红外荧光引导手术工具可在头颈鳞状细胞癌切除过程中同时实现癌症边缘和神经可视化
  • 批准号:
    10603689
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Extraordinary Dispersion Engineering In Enabling Ultrafast Swept Source visiblelight Optical Coherence Tomography
非凡的色散工程实现超快扫频源可见光光学相干断层扫描
  • 批准号:
    10698705
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
HARC: HIV accessory and regulatory complexes
HARC:HIV 附件和调节复合体
  • 批准号:
    10506980
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
  • 批准号:
    10665540
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了