CAREER: Highly Underactuated Lower-Body Exoskeletons and the Dynamics of Walking

职业:高度欠驱动的下半身外骨骼和行走动力学

基本信息

项目摘要

This Faculty Early Career Development Program (CAREER) award supports research that will advance understanding of human walking and create a new type of lower-body exoskeleton for mitigation of disability and augmentation of human performance. When people walk normally, two factors largely determine their balance and forward progress: the location of each footstep, and how hard each leg in stance pushes on the ground. In general, when an exoskeleton produces forces that are slightly different from what the person wearing it expects or wants, it affects how the person takes their next step, which in turn affects the future exoskeleton response. The exoskeletons studied in this project supplement the natural muscular strength of their wearers by adding to the support forces during walking. Systematically varying the exoskeleton force and measuring the response will reveal a map of the dynamics of balance and movement during walking, including how these change on uphill and downhill slopes. This new fundamental understanding of walking can then be used by the exoskeleton to adapt to individual characteristics of any user, and from there to stimulate desired walking patterns while decreasing the likelihood of a fall. This research will be complemented by educational outreach, including informing the broader public about robotics and human-robot interaction via science videos on social media, and engaging pre-college students with workshops on biomechanics and exoskeleton control. This project is centered on a new type of exoskeleton that uses a single prismatic actuator on each leg to apply force from the ground next to a planted foot, directly to the wearer's center of mass. The actuator can provide up to 80 percent of the unassisted ground reaction force during walking. The exoskeleton hip is unactuated and free to rotate, which allows the wearer to choose their footstep locations as though the exoskeleton was absent. Human subject experiments will study how the human kinematics, muscle activity, metabolic cost, foot placement, and stability are affected by different forces on the person's center of mass under various conditions including varying speeds and slopes -- essentially accomplishing system identification of the coupled human-robot system. These system identification results, together with the divergent component of motion (DCM) framework and machine learning, will define an exoskeleton controller to provide optimized walking assist forces based on the wearer's current state and expected future footstep locations. The project will subsequently investigate the bi-directional adaptation between the human and exoskeleton: how humans adapt to the exoskeleton forces, how their subsequent footstep locations are affected by these forces, and how the exoskeleton can best adapt to an individual human and their personal locomotion patterns and footstep placements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师早期职业发展计划(CAREER)奖支持研究,将促进人类行走的理解,并创造一种新型的下半身外骨骼,以减轻残疾和增强人类的表现。当人们正常行走时,有两个因素在很大程度上决定了他们的平衡和前进速度:每一步的位置,以及每一条腿在地面上的力量。一般来说,当外骨骼产生的力与穿戴它的人期望或想要的力略有不同时,它会影响人如何采取下一步,这反过来又会影响未来的外骨骼响应。该项目中研究的外骨骼通过增加行走时的支撑力来补充穿戴者的自然肌肉力量。 系统地改变外骨骼力并测量响应将揭示步行过程中平衡和运动的动态图,包括这些在上坡和下坡时的变化。然后,外骨骼可以使用对行走的这种新的基本理解来适应任何用户的个体特征,并从那里刺激期望的行走模式,同时降低跌倒的可能性。这项研究将辅之以教育推广,包括通过社交媒体上的科学视频向更广泛的公众宣传机器人技术和人机交互,并让大学预科生参加生物力学和外骨骼控制研讨会。 该项目的核心是一种新型的外骨骼,它在每条腿上使用一个单一的棱柱形致动器,从踩踏脚旁边的地面直接向穿戴者的质心施加力。在行走过程中,致动器可以提供高达80%的无辅助地面反作用力。外骨骼髋部未被致动且自由旋转,这允许穿戴者选择其脚步位置,就好像外骨骼不存在一样。 人类受试者实验将研究人类运动学,肌肉活动,代谢成本,脚放置和稳定性如何在各种条件下受到人的质心上的不同力的影响,包括变化的速度和坡度-基本上完成耦合的人-机器人系统的系统识别。 这些系统识别结果与运动发散分量(DCM)框架和机器学习一起将定义外骨骼控制器,以基于穿戴者的当前状态和预期的未来脚步位置提供优化的行走辅助力。 该项目随后将研究人类和外骨骼之间的双向适应:人类如何适应外骨骼力,他们随后的脚步位置如何受到这些力的影响,以及外骨骼如何最好地适应个人及其个人运动模式和脚步位置。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Deep Learning-Based Approach for Foot Placement Prediction
  • DOI:
    10.1109/lra.2023.3290521
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Sung-Wook Lee;A. Asbeck
  • 通讯作者:
    Sung-Wook Lee;A. Asbeck
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Asbeck其他文献

Alan Asbeck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Asbeck', 18)}}的其他基金

NRI: A Compliant Lower-Body Exoskeleton to Enable Balanced Walking for Patients with Spinal Cord Injuries
NRI:顺应性下半身外骨骼,使脊髓损伤患者能够平衡行走
  • 批准号:
    1525972
  • 财政年份:
    2015
  • 资助金额:
    $ 66.95万
  • 项目类别:
    Standard Grant

相似海外基金

SpyTCR-RBNP - Engineering a highly targeted and biocompatible drug delivery system for solid cancer treatment
SpyTCR-RBNP - 设计用于实体癌症治疗的高度针对性和生物相容性的药物输送系统
  • 批准号:
    10095606
  • 财政年份:
    2024
  • 资助金额:
    $ 66.95万
  • 项目类别:
    Collaborative R&D
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
  • 批准号:
    24K15389
  • 财政年份:
    2024
  • 资助金额:
    $ 66.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Highly integrated GaN power converter to calm the interference
高集成GaN功率转换器,平息干扰
  • 批准号:
    EP/Y002261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.95万
  • 项目类别:
    Research Grant
Highly Ce3+ - doped Glass Material for Advanced Photonic Devices
用于先进光子器件的高掺杂 Ce3 玻璃材料
  • 批准号:
    2310284
  • 财政年份:
    2024
  • 资助金额:
    $ 66.95万
  • 项目类别:
    Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 66.95万
  • 项目类别:
    Continuing Grant
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
  • 批准号:
    2338857
  • 财政年份:
    2024
  • 资助金额:
    $ 66.95万
  • 项目类别:
    Continuing Grant
Professional incorporation and social inclusion of highly-skilled Asian migrants in Japan and the UK
日本和英国高技能亚洲移民的专业融入和社会融入
  • 批准号:
    24K16520
  • 财政年份:
    2024
  • 资助金额:
    $ 66.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
  • 批准号:
    24K17743
  • 财政年份:
    2024
  • 资助金额:
    $ 66.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
  • 批准号:
    2345836
  • 财政年份:
    2024
  • 资助金额:
    $ 66.95万
  • 项目类别:
    Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
  • 批准号:
    2348571
  • 财政年份:
    2024
  • 资助金额:
    $ 66.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了