CAREER: Tuning Complexity in Rare-Earth Transition Metal Oxides

职业:调整稀土过渡金属氧化物的复杂性

基本信息

  • 批准号:
    2145174
  • 负责人:
  • 金额:
    $ 70.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).NON-TECHNICAL SUMMARYMaterials called “complex oxides” are essential for technologies such as cell phone batteries, capacitors in all kinds of electronic devices, and catalysts that clean up industrial pollutants. These materials contain oxygen and two or more types of metal ions. This configuration allows for highly variable composition (which ions are present) and structure (how the ions are arranged), which can be harnessed to improve the technologies that rely on these families of compounds. With this CAREER award, Professor Katharine Page at the University of Tennessee Knoxville will study “High Entropy Oxides” (HEOs) that contain five or more ions of rare-earth elements or transition metals, which can provide an extremely vast array of compositions and structures. By using novel techniques to uncover and influence how the various HEO atoms interact, this research will reveal how to combine multiple desirable physical properties into a single material. These insights will lead to more efficient, more powerful, and more diverse fuel cells, catalysts, sensors, and electronics. Additionally, this project will produce a middle school workshop series that will promote careers in materials chemistry and related fields through hands-on activities that celebrate the creative exploration process of materials engineering and crystallography. Professors, graduate students, and undergrads involved in the research will teach and mentor participants in the workshop series at economically disadvantaged schools in rural East Tennessee and Appalachian communities.TECHNICAL SUMMARY With this CAREER award, Professor Katharine Page at the University of Tennessee Knoxville aims to uncover the rules for enabling hierarchical and tailored design in pyrochlore and layered perovskite-based rare earth transition metal complex oxide families featuring two to five atom types per lattice site. Relatively little is currently known about the classifications separating traditional complex oxide phases from the emerging class of High Entropy Oxides (materials involving five or more ions per lattice site), including the extent to which new design paradigms are needed to understand and control their physical properties. High entropy and kinetic reaction controls will be examined for their potential to produce single-phase materials and specific crystal-chemical conditions in the pyrochlore family, seeking to improve ionic conductivity at lower working temperature for potential applications in solid oxide fuel cells and catalysts. Similar approaches will seek to tune magnetic, electronic, and multiferroic responses in the layered perovskite family. Sophisticated scattering probes, theoretical tools, and multi-modal modeling methods will be combined to evaluate the impact of local to long-range structure traits on the electronic and magnetic properties of the respective series. The extent to which specific defects, distortions, and chemical short-range order may be achieved and tuned to impact the stability and respective properties of the structural classes will be determined. This fundamental materials chemistry approach will lead to the foundational insights necessary to design HEO materials with desired combinations of traits. Relationships governing the stability, local to global symmetry, and overall tunability in HEOs emerging from this work will impact the broader exploration of complex oxide chemistries unfolding across multiple disciplines and applications. Concurrently, this project will promote a new generation of scientists through outreach, teaching, and mentoring activities that celebrate the creative exploration process of materials chemistry and crystallography approaches as part of a workshop series for traditionally marginalized groups at economically disadvantaged middle schools in rural East Tennessee and Appalachian communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。非技术概述被称为“复合氧化物”的材料对于手机电池、各种电子设备中的电容器以及清理工业污染物的催化剂等技术至关重要。这些材料含有氧和两种或更多种类型的金属离子。这种配置允许高度可变的组成(存在哪些离子)和结构(离子如何排列),这可以用来改进依赖于这些化合物家族的技术。有了这个职业奖,田纳西大学诺克斯维尔的凯瑟琳·佩奇教授将研究“高熵氧化物”(HEO),它含有五个或更多的稀土元素或过渡金属离子,可以提供极其广泛的组成和结构。通过使用新技术来揭示和影响各种HEO原子如何相互作用,这项研究将揭示如何将联合收割机多种理想的物理特性结合到一种材料中。这些见解将导致更高效,更强大,更多样化的燃料电池,催化剂,传感器和电子产品。此外,该项目将产生一个中学研讨会系列,通过庆祝材料工程和晶体学的创造性探索过程的实践活动,促进材料化学和相关领域的职业生涯。参与研究的教授、研究生和本科生将在田纳西州东部农村和阿巴拉契亚社区的经济困难学校教授和指导研讨会系列的参与者。田纳西大学诺克斯维尔的凯瑟琳·佩奇教授旨在揭示烧绿石和层状钙钛矿中实现分层和定制设计的规则,基于稀土过渡金属复合氧化物族,其特征在于每个晶格位置具有2至5种原子类型。目前对将传统的复合氧化物相与新兴的高熵氧化物(每个晶格位置涉及五个或更多离子的材料)相分离的分类知之甚少,包括需要新的设计范例来理解和控制其物理性质的程度。将检查高熵和动力学反应控制是否有潜力产生烧绿石家族中的单相材料和特定的晶体化学条件,寻求在较低工作温度下提高离子电导率,以用于固体氧化物燃料电池和催化剂的潜在应用。类似的方法将寻求调整层状钙钛矿家族中的磁性,电子和多铁性响应。先进的散射探针,理论工具和多模态建模方法将结合起来,以评估本地到远程结构特征对相应系列的电子和磁性的影响。将确定特定缺陷、畸变和化学短程有序可实现和调整以影响结构类别的稳定性和相应性质的程度。这种基本的材料化学方法将导致设计具有所需特性组合的HEO材料所需的基本见解。从这项工作中出现的HEO的稳定性,局部到全局对称性和整体可调性的关系将影响复杂氧化物化学在多个学科和应用中展开的更广泛的探索。同时,该项目将通过外联、教学、和指导活动,庆祝材料化学和晶体学方法的创造性探索过程,作为田纳西州东部农村和阿巴拉契亚社区经济弱势中学传统边缘化群体研讨会系列的一部分。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local cation order and ferrimagnetism in compositionally complex spinel ferrites
  • DOI:
    10.1063/5.0123728
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Xin Wang;B. Musicó;C. Kons;Peter C. Metz;V. Keppens;D. Gilbert;Yuanpeng Zhang;K. Page
  • 通讯作者:
    Xin Wang;B. Musicó;C. Kons;Peter C. Metz;V. Keppens;D. Gilbert;Yuanpeng Zhang;K. Page
Phase Selectivity and Stability in Compositionally Complex Nano (nA1/n)Co2O4
  • DOI:
    10.1021/acs.chemmater.3c01647
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Xin Wang;Peter C. Metz;E. Calì;P. R. Jothi;E. Lass;K. Page
  • 通讯作者:
    Xin Wang;Peter C. Metz;E. Calì;P. R. Jothi;E. Lass;K. Page
Local cation ordering in compositionally complex Ruddlesden–Popper n = 1 oxides
  • DOI:
    10.1063/5.0144766
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Bo Jiang;K. Pitike;D. Lin;Stephen C. Purdy;Xin Wang;Yafan Zhao;Yuanpeng Zhang;Peter C. Metz-
  • 通讯作者:
    Bo Jiang;K. Pitike;D. Lin;Stephen C. Purdy;Xin Wang;Yafan Zhao;Yuanpeng Zhang;Peter C. Metz-
Entropy-driven phase transitions in complex ceramic oxides
  • DOI:
    10.1103/physrevmaterials.6.090301
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    R. Spurling;E. Lass;Xin Wang;K. Page
  • 通讯作者:
    R. Spurling;E. Lass;Xin Wang;K. Page
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katharine Page其他文献

Empirical potential structure refinement of semi-crystalline polymer systems: polytetrafluoroethylene and polychlorotrifluoroethylene
半结晶聚合物体系的经验潜在结构细化:聚四氟乙烯和聚三氟氯乙烯
  • DOI:
    10.1088/0953-8984/25/45/454219
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alan K. Soper;Katharine Page;Anna Llobet
  • 通讯作者:
    Anna Llobet
Heterogeneous nucleation in Zr-Cu-Al-Ag metallic glasses triggered by quenched-in metastable crystals - A time-resolved neutron diffraction study
淬火亚稳态晶体触发 Zr-Cu-Al-Ag 金属玻璃中的异质成核 - 时间分辨中子衍射研究
  • DOI:
    10.1016/j.physb.2017.12.030
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenduo Wu;Si Lan;Xiaoya Wei;Daniel Olds;Katharine Page;Baolong Shen;Xun-Li Wang
  • 通讯作者:
    Xun-Li Wang
Hydrogen in energy and information sciences
  • DOI:
    10.1557/s43577-024-00714-9
  • 发表时间:
    2024-04-22
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Heejung W. Chung;Bernadette Cladek;Yong-Yun Hsiau;Yan-Yan Hu;Katharine Page;Nicola H. Perry;Bilge Yildiz;Sossina M. Haile
  • 通讯作者:
    Sossina M. Haile
Pair distribution function analysis applied to decahedral gold nanoparticles
应用于十面体金纳米粒子的对分布函数分析
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heinz Nakotte;C. Silkwood;Katharine Page;Hsiu‐Wen Wang;Daniel Olds;Boris Kiefer;S. Manna;Dmitry Karpov;E. Fohtung;E. E. Fullerton
  • 通讯作者:
    E. E. Fullerton
Preparation and characterization of Pd<sub>2</sub>Sn nanoparticles
  • DOI:
    10.1016/j.materresbull.2007.05.010
  • 发表时间:
    2007-12-04
  • 期刊:
  • 影响因子:
  • 作者:
    Katharine Page;Christina S. Schade;Jinping Zhang;Peter J. Chupas;Karena W. Chapman;Thomas Proffen;Anthony K. Cheetham;Ram Seshadri
  • 通讯作者:
    Ram Seshadri

Katharine Page的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAS-SC: Tuning Hydrocarbon Products from Temperature-Gradient Thermolysis of Polyolefins and the Subsequent Upcycling to Functional Chemicals
CAS-SC:调整聚烯烃温度梯度热解的碳氢化合物产品以及随后升级为功能化学品
  • 批准号:
    2411680
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Standard Grant
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Studentship
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Standard Grant
Tuning catalyst reaction environments towards photoreforming of wastewater
调整催化剂反应环境以实现废水的光重整
  • 批准号:
    DP240100687
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Discovery Projects
Tuning near-infrared photosynthesis
调节近红外光合作用
  • 批准号:
    BB/X015858/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Research Grant
Tuning near-infrared photosynthesis
调节近红外光合作用
  • 批准号:
    BB/X015955/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Research Grant
Tuning Large language models to read biological literature
调整大型语言模型以阅读生物文献
  • 批准号:
    BB/Y514032/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
  • 批准号:
    24K20737
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tuning into plant development to improve the sustainability of arable farming
调整植物开发以提高耕作的可持续性
  • 批准号:
    MR/Y011708/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.13万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了