Tuning near-infrared photosynthesis
调节近红外光合作用
基本信息
- 批准号:BB/X015955/1
- 负责人:
- 金额:$ 56.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Photosynthesis is the source of all the food we eat, and almost all of the energy we use. This process uses sunlight to remove carbon dioxide from the atmosphere and converts it into sugars that feed the planet. Sunlight is captured by chlorophyll pigments that are arranged and held in place by proteins; these pigment-protein arrangements are known as antenna complexes. Antennas collect the light energy and funnel it towards specialised 'reaction centres', where the energy is converted to a form that can be used by the cell.Plants and cyanobacteria (blue-green algae) use chlorophyll (Chl) pigments to capture visible light (400-700 nm) to perform 'oxygenic' photosynthesis, releasing the oxygen that supports respiration. Additionally, a diverse range of bacteria are also capable of using far-red and near-infrared light (>700 nm), which we cannot see but feel as heat, to perform 'anoxygenic' photosynthesis. This mode of photosynthesis relies on the bacteriochlorophyll (BChl) pigments, rather than Chls.The majority of anoxygenic photosynthesisers use BChl a to harvest light between 750-900 nm, while a few use BChl b and harvest very low energy wavelengths >1000 nm. Most of the light between 900-1000 nm is absorbed by water in the atmosphere, so it is rarely used by naturally-occurring phototrophs. This project will reveal how BChl b-containing organisms are able to extend absorption past this rarely-used region, and whether it is possible to access even lower energy wavelengths to power photosynthesis. We will do this by creating new versions of the BChl b antenna-reaction centre complex able to capture unique ranges in the near-infrared. We will also measure how close together the pigments in these complexes are, and how quickly/efficiently energy can collected and funnelled to the reaction centre to power the cell.Achieving these aims will reveal how to control and tune absorption in the near-infrared region of the spectrum, and to see if the low-energy limit for photosynthesis can be surpassed, with the long-term goal of efficiently capturing the entire usable range of the solar spectrum to tackle some of humanity's impending fuel and food supply challenges in a sustainable manner.
光合作用是我们吃的所有食物的来源,几乎是我们使用的所有能量。该过程使用阳光去除大气中的二氧化碳,并将其转化为供电的糖。阳光是由蛋白质排列和固定在适当位置的叶绿素色素捕获的。这些颜料蛋白质排列称为天线复合物。 Antennas collect the light energy and funnel it towards specialised 'reaction centres', where the energy is converted to a form that can be used by the cell.Plants and cyanobacteria (blue-green algae) use chlorophyll (Chl) pigments to capture visible light (400-700 nm) to perform 'oxygenic' photosynthesis, releasing the oxygen that supports respiration.此外,多种细菌还能够使用远红色和近红外光(> 700 nm),我们看不到它是热的,可以进行“无氧”光合作用。这种光合作用模式取决于细菌氯粘生(BCHL)的颜料,而不是CHL。大多数无氧光合作用者使用BCHL A收集750-900 nm的光,而少数使用BCHL B和收获BCHL B和收获非常低的能量波长> 1000 nm> 1000 nm。 900-1000 nm之间的大部分光在大气中被水吸收,因此很少被自然呈现的光养食物使用。该项目将揭示含BCHL B的生物如何能够将吸收延伸到这个很少使用的区域,以及是否有可能访问较低的能量波长来进行光合作用。我们将通过创建新版本的BCHL B天线反应中心综合体能够捕获近红外范围的新版本。我们还将衡量这些复合物中的色素之间的近距离,以及能够收集和漏斗到反应中心的速度/有效的能量,以供电。以可持续的方式应对人类即将面临的燃料和粮食供应挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Canniffe其他文献
Daniel Canniffe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Canniffe', 18)}}的其他基金
Assembly and evolution of a photosynthetic antenna
光合天线的组装和演化
- 批准号:
BB/W008076/1 - 财政年份:2022
- 资助金额:
$ 56.6万 - 项目类别:
Research Grant
相似国自然基金
CRISPR-Cas精准识别协同NEAR指数信号放大一体化生物传感体系构建用于胰腺癌多重基因突变检测方法研究
- 批准号:32371521
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
太阳风在靠近阿尔芬表面的特性研究
- 批准号:42274201
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
可编程CRISPR/Cas体系诱导NEAR多重扩增结合上转换荧光纳米探针用于病原体高灵敏可视化检测方法研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
建立鼻咽癌外泌体PLA-RPA检测新技术及在EBV抗体阳性人群中的筛查应用
- 批准号:81871711
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
基于NEAR放大及发射光叠加信号分析的高灵敏可视化双食源性病毒检测方法研究
- 批准号:31701683
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
FlexNIR-PD: A resource efficient UK-based production process for patented flexible Near Infrared Sensors for LIDAR, Facial recognition and high-speed data retrieval
FlexNIR-PD:基于英国的资源高效生产工艺,用于 LIDAR、面部识别和高速数据检索的专利柔性近红外传感器
- 批准号:
10098113 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
Collaborative R&D
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
- 批准号:
10824767 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
Tuning near-infrared photosynthesis
调节近红外光合作用
- 批准号:
BB/X015858/1 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
Research Grant
Near-infrared GaN quantum cascade laser for the next-generation self-driving car
用于下一代自动驾驶汽车的近红外GaN量子级联激光器
- 批准号:
23K20955 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Micro-Electromechanical Systems (MEMS)-Based Near-Zero Power Infrared Sensors for Proximity Detection
SBIR 第一阶段:基于微机电系统 (MEMS) 的近零功耗红外传感器,用于接近检测
- 批准号:
2304549 - 财政年份:2024
- 资助金额:
$ 56.6万 - 项目类别:
Standard Grant