CAREER: High Accuracy Methods for Electronic Structure of Molecules and Materials

职业:分子和材料电子结构的高精度方法

基本信息

  • 批准号:
    2145209
  • 负责人:
  • 金额:
    $ 64.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).WIth support from the Chemical Theory, Models and Computational Methods Program in the Division of Chemistry, Sandeep Sharma of the University of Colorado at Boulder is developing computational theories and methods to advance the characterization of the electronic structure of molecules and materials. Of specific interest are systems that contain clusters of transition metal atoms; such catalysts are at the heart of many critical processes in the pharmaceutical industry and in the area of energy conversion. These systems give rise to fascinating phenomena that are relevant in biology for example, from bird navigation via magnetoreceptors to enzyme-catalyzed redox reaction of small molecules. Other phenomena include materials with quantum states relevant to Quantum Information Science (QIS). The underlying microscopic principles giving rise to these remarkable properties are often not well understood and/or characterized. One avenue of obtaining a better understanding is to perform "numerical experiments" instead of laboratory experiments, as the latter, may be too expensive and sometimes extremely difficult to conduct. However, performing such "numerical experiments" is far from trivial and the goal of this proposal is to overcome this challenge. To this end, Dr. Sharma and his research group will develop theories, methods, and computer software that will enable these numerical experiments. These developments will see their validation on two classes of systems: (1) Cu-O complexes that are important intermediates when copper containing catalysts/enzymes perform O2 activation followed by substrate oxidation via C-H bond breaking; (2) transition metal oxides that contain iridium atoms and display exotic quantum states. For broader impacts of the project, the Sharma group will make the newly developed software available to the chemistry community and create new educational materials dealing with the fundamentals of quantum chemistry and software implementation. For outreach, Dr. Sharma will be involved in education and training activities under a US-Africa collaboration framework. Sandeep Sharma and his research group will devise novel algorithms of electronic structure that combine techniques borrowed from quantum Monte Carlo, multi-reference quantum chemistry, and tensor network methods to significantly advance our ability to characterize strongly correlated systems. These algorithms will be used to characterize the physics/chemistry of two classes of representative systems: (1) Cu-O complexes that are important intermediates when copper containing catalysts/enzymes perform O2 activation followed by substrate oxidation, in particular C-H bond breaking; (2) Iridates that are transition metal oxides that contain iridium atoms and display exotic quantum states facilitated by a competition between electron correlation and spin orbit coupling; these are candidates for hosting topologically protected fault-tolerant quantum states. In the area of broader impacts, the Sharma group will make the newly developed software available to the chemistry community and create new educational material dealing with the fundamentals of quantum chemistry and software implementation. In addition, the PI plans to work through USAfri (US-Africa Initiative in Electronic Structure) and ASESMA (African School on Electronic Structure Methods and Applications) to do international outreach by teaching courses in sub-Saharan Africa. This will not only help educate early career students of color, but will also provide an opportunity to attract some highly talented students to pursue their PhD studies in the US.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。在化学系化学理论、模型和计算方法项目的支持下,科罗拉多大学博尔德分校的Sandeep Sharma正在开发计算理论和方法,以推进分子和材料电子结构的表征。特别感兴趣的是包含过渡金属原子簇的系统;这种催化剂是制药工业和能量转换领域许多关键过程的核心。这些系统产生了与生物学相关的迷人现象,例如,从鸟类通过磁感受器导航到酶催化的小分子氧化还原反应。其他现象包括与量子信息科学(QIS)相关的具有量子态的材料。产生这些显著特性的基本微观原理往往不被很好地理解和/或描述。获得更好理解的一个途径是进行“数值实验”而不是实验室实验,因为后者可能过于昂贵,有时极其难以进行。然而,进行这样的“数值实验”远非微不足道,本提案的目标是克服这一挑战。为此,Sharma博士和他的研究小组将开发理论、方法和计算机软件,使这些数值实验成为可能。这些发展将在两类系统上得到验证:(1)Cu-O配合物是含铜催化剂/酶进行O2活化后通过C-H键断裂进行底物氧化的重要中间体;(2)含有铱原子并显示奇异量子态的过渡金属氧化物。为了使项目产生更广泛的影响,Sharma小组将把新开发的软件提供给化学社区,并创建涉及量子化学基础知识和软件实现的新教材。在外联方面,Sharma博士将参与美国-非洲合作框架下的教育和培训活动。Sandeep Sharma和他的研究小组将设计新的电子结构算法,结合从量子蒙特卡罗、多参考量子化学和张量网络方法中借鉴的技术,显著提高我们表征强相关系统的能力。这些算法将用于表征两类代表性系统的物理/化学特征:(1)Cu-O配合物是含铜催化剂/酶进行O2活化和底物氧化(特别是C-H键断裂)时的重要中间体;(2)铱酸盐是含有铱原子的过渡金属氧化物,在电子相关和自旋轨道耦合的竞争下呈现奇异量子态;这些都是承载拓扑保护容错量子态的候选对象。在更广泛的影响领域,Sharma小组将把新开发的软件提供给化学社区,并创建新的教育材料,处理量子化学的基础知识和软件实现。此外,PI计划通过USAfri(美国-非洲电子结构倡议)和ASESMA(非洲电子结构方法与应用学院)在撒哈拉以南非洲地区教授课程,开展国际推广工作。这不仅有助于教育有色人种的早期职业学生,而且还将提供一个机会,吸引一些非常有才华的学生到美国攻读博士学位。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast Exchange with Gaussian Basis Set Using Robust Pseudospectral Method
使用鲁棒伪谱方法与高斯基集快速交换
Effectiveness of Different Ligands on Silane Precursors for Ligand Exchange to Etch Metal Fluorides
不同配体对硅烷前体进行配体交换蚀刻金属氟化物的有效性
  • DOI:
    10.1021/acs.chemmater.2c01603
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Lii-Rosales, Ann;Johnson, Virginia L.;Cavanagh, Andrew S.;Fischer, Andreas;Lill, Thorsten;Sharma, Sandeep;George, Steven M.
  • 通讯作者:
    George, Steven M.
Cyanurate-Linked Covalent Organic Frameworks Enabled by Dynamic Nucleophilic Aromatic Substitution
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sandeep Sharma其他文献

Fracture monitoring of steel and GFRP reinforced concrete beams using acoustic emission and digital image correlation techniques
使用声发射和数字图像相关技术监测钢和 GFRP 钢筋混凝土梁的断裂
  • DOI:
    10.1002/suco.202000650
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Gaurav Sharma;Shruti Sharma;Sandeep Sharma
  • 通讯作者:
    Sandeep Sharma
Farm waste-eggshell nanoparticles constitute gel for safe navigation of probiotic across the stomach
农场废物蛋壳纳米粒子构成凝胶,使益生菌安全穿过胃
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    B. Sahu;Sandeep Sharma;Kamalji T. Kaur;M. Chandel;Parul Sood;Monika Singh;Vijay Shanmugham
  • 通讯作者:
    Vijay Shanmugham
Structured abstracts: do they improve the quality of information in abstracts?
结构化摘要:它们是否提高了摘要中的信息质量?
A sensitive NH3 sensor using MoSe2/SnO2 composite
采用 MoSe2/SnO2 复合材料的灵敏 NH3 传感器
  • DOI:
    10.1016/j.matpr.2022.07.209
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Imtej Singh Saggu;Sukhwinderpal Singh;Sandeep Sharma
  • 通讯作者:
    Sandeep Sharma
Green ICT, Communication, Networking, and Data Processing
绿色ICT、通信、网络和数据处理
  • DOI:
    10.1007/978-3-030-48141-4_8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sandeep Sharma;N. Gayathri;S. R. Kumar;C. Ramesh;Abhishek Kumar;R. K. Modanval
  • 通讯作者:
    R. K. Modanval

Sandeep Sharma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sandeep Sharma', 18)}}的其他基金

Accurate Treatment of Strong Electron Correlation in Relativistic Systems
相对论系统中强电子相关性的精确处理
  • 批准号:
    1800584
  • 财政年份:
    2018
  • 资助金额:
    $ 64.72万
  • 项目类别:
    Standard Grant

相似海外基金

Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods PID 7012435
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性 PID 7012435
  • 批准号:
    BB/X018563/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.72万
  • 项目类别:
    Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性
  • 批准号:
    BB/X018660/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.72万
  • 项目类别:
    Research Grant
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
  • 批准号:
    2309728
  • 财政年份:
    2023
  • 资助金额:
    $ 64.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
  • 批准号:
    2309727
  • 财政年份:
    2023
  • 资助金额:
    $ 64.72万
  • 项目类别:
    Standard Grant
Development of Vacancy Rate Prediction Methods for Apartments with Prediction Accuracy and Interpretability
开发具有预测准确性和可解释性的公寓空置率预测方法
  • 批准号:
    23K01333
  • 财政年份:
    2023
  • 资助金额:
    $ 64.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The development of Machine Learning methods to correct data responses from low-cost sensors to improve agricultural productivity and air quality data accuracy.
开发机器学习方法来纠正低成本传感器的数据响应,以提高农业生产力和空气质量数据的准确性。
  • 批准号:
    10081002
  • 财政年份:
    2023
  • 资助金额:
    $ 64.72万
  • 项目类别:
    Collaborative R&D
Developing a Framework to Advance Cultural Sensitivity and Accommodate Behavioral Variability in Toddler Autism Screening: A Mixed-Methods Cross-Cultural Approach to Improve Autism Screening Accuracy
制定一个框架,以提高幼儿自闭症筛查中的文化敏感性并适应行为变异性:提高自闭症筛查准确性的混合方法跨文化方法
  • 批准号:
    10676552
  • 财政年份:
    2023
  • 资助金额:
    $ 64.72万
  • 项目类别:
Developing New Statistical Methods for Vector-Borne Disease Surveillance to Improve Accuracy while Reducing Cost
开发新的媒介传播疾病监测统计方法,以提高准确性并降低成本
  • 批准号:
    10774013
  • 财政年份:
    2023
  • 资助金额:
    $ 64.72万
  • 项目类别:
Improving detection accuracy of cultural heritage pests based on mathematical models and nondestructive evaluation methods
基于数学模型和无损评价方法提高文化遗产害虫检测精度
  • 批准号:
    22K13244
  • 财政年份:
    2022
  • 资助金额:
    $ 64.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Re-counting crime: New methods to improve the accuracy of estimates of crime
重新统计犯罪:提高犯罪估计准确性的新方法
  • 批准号:
    ES/T015667/1
  • 财政年份:
    2021
  • 资助金额:
    $ 64.72万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了