CAREER: Flexible and Robust Reasoning in Natural Language
职业:灵活而稳健的自然语言推理
基本信息
- 批准号:2145280
- 负责人:
- 金额:$ 50.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Modern question answering systems, embedded in search engines and digital assistants, have improved dramatically with the development of large neural network models. When a user asks a simple question, these systems can typically return an answer directly rather than just linking to a webpage. However, these systems still fail on more complex questions, and when they fail, they may mislead their users. They lack an important capability that humans have: the ability to reason about and synthesize the information they see, retrieve and integrate additional information, and arrive at a justified conclusion. This CAREER project aims to address this shortcoming by developing systems that "think through" textual evidence, leading to more reliable answers that can be explained to a user. Such advances fit into a broader thread of building trustable AI systems that explicitly show their work and are auditable before and during their deployment.This project specifically addresses the problems of question answering and fact-checking by developing a learning-based system that reasons in natural language. The system takes text as input, then applies pre-trained neural network models to reformulate that text, derive conclusions from it, and eventually check a claim or verify an answer. This process produces a series of logically connected statements understandable by a human. This outcome is enabled by two modules. First, a deduction module repeatedly combines two statements and generates a third that follows from the inputs, encapsulating common logical rules. Second, a verifier determines whether the final deduced evidence validates the original claim. Both systems are built from pre-trained models like T5 that have demonstrated strong generalization capabilities. Collecting training data for these models constitutes a core challenge; the project's approach blends multiple strategies including synthetic data generation and human-in-the-loop annotation. These techniques are applied to the domains of question answering and fact checking, problems where providing additional explanation and justification instead of just giving a best-effort answer are essential to make usable systems. This system paves the way for NLP tools that know what they don't know, provide interpretability for end users, and enable system developers to better understand and improve their models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金根据《2021 年美国救援计划法案》(公法 117-2)提供。随着大型神经网络模型的发展,嵌入搜索引擎和数字助理的现代问答系统得到了显着改进。当用户提出一个简单的问题时,这些系统通常可以直接返回答案,而不仅仅是链接到网页。然而,这些系统在解决更复杂的问题时仍然会失败,并且当它们失败时,它们可能会误导用户。它们缺乏人类所拥有的一项重要能力:推理和综合所看到的信息、检索和整合附加信息并得出合理结论的能力。 该 CAREER 项目旨在通过开发“思考”文本证据的系统来解决这一缺点,从而获得可以向用户解释的更可靠的答案。这些进步符合构建可信赖的人工智能系统的更广泛的思路,这些系统可以明确地显示其工作,并在部署之前和部署期间进行审计。该项目通过开发一个以自然语言推理的基于学习的系统,专门解决了问答和事实核查的问题。该系统将文本作为输入,然后应用预先训练的神经网络模型来重新表述该文本,从中得出结论,并最终检查声明或验证答案。这个过程产生一系列人类可以理解的逻辑连接的语句。这一结果是由两个模块实现的。首先,演绎模块重复组合两个语句,并根据输入生成第三个语句,封装通用逻辑规则。其次,验证者确定最终推断的证据是否验证原始主张。这两个系统都是由 T5 等预训练模型构建的,这些模型表现出了强大的泛化能力。收集这些模型的训练数据是一个核心挑战;该项目的方法融合了多种策略,包括合成数据生成和人机交互注释。这些技术应用于问答和事实检查领域,在这些问题中,提供额外的解释和理由,而不仅仅是给出尽力而为的答案,对于制造可用的系统至关重要。该系统为知道自己不知道的 NLP 工具铺平了道路,为最终用户提供了可解释性,并使系统开发人员能够更好地理解和改进他们的模型。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning
- DOI:
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Xi Ye;Greg Durrett
- 通讯作者:Xi Ye;Greg Durrett
Can LMs Learn New Entities from Descriptions? Challenges in Propagating Injected Knowledge
LM 可以从描述中学习新实体吗?
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Onoe, Yasumasa;Zhang, Michael J.Q.;Padmanabhan, Shankar;Durrett, Greg;Choi, Eunsol
- 通讯作者:Choi, Eunsol
Generating Literal and Implied Subquestions to Fact-check Complex Claims
生成字面和隐含的子问题来事实检查复杂的声明
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chen, Jifan;Sriram, Aniruddh;Choi, Eunsol;Durrett, Greg
- 通讯作者:Durrett, Greg
Natural Language Deduction through Search over Statement Compositions
- DOI:10.18653/v1/2022.findings-emnlp.358
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Kaj Bostrom;Zayne Sprague;Swarat Chaudhuri;Greg Durrett
- 通讯作者:Kaj Bostrom;Zayne Sprague;Swarat Chaudhuri;Greg Durrett
Natural Language Deduction with Incomplete Information
- DOI:10.48550/arxiv.2211.00614
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Zayne Sprague;Kaj Bostrom;Swarat Chaudhuri;Greg Durrett
- 通讯作者:Zayne Sprague;Kaj Bostrom;Swarat Chaudhuri;Greg Durrett
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Durrett其他文献
Gregory Durrett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Durrett', 18)}}的其他基金
The 2019 North American Chapter of the Association for Computational Linguistics Student Research Workshop
2019年计算语言学协会北美分会学生研究研讨会
- 批准号:
1907573 - 财政年份:2019
- 资助金额:
$ 50.48万 - 项目类别:
Standard Grant
RI: Small: Applying discrete reasoning steps in solving natural language processing tasks
RI:小:应用离散推理步骤解决自然语言处理任务
- 批准号:
1814522 - 财政年份:2018
- 资助金额:
$ 50.48万 - 项目类别:
Standard Grant
相似国自然基金
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
CAREER: Hierarchical Robust Stochastic Control for a Flexible and Sustainable Power Supply
职业:用于灵活和可持续电源的分层鲁棒随机控制
- 批准号:
2236843 - 财政年份:2023
- 资助金额:
$ 50.48万 - 项目类别:
Continuing Grant
Outliers are not what they seem: data-aware, flexible, and robust randomized iterative methods
异常值并不像看上去那样:数据感知、灵活且稳健的随机迭代方法
- 批准号:
2309685 - 财政年份:2023
- 资助金额:
$ 50.48万 - 项目类别:
Continuing Grant
Fast Precision Robust Control of Resonant Flexible Systems
谐振柔性系统的快速精确鲁棒控制
- 批准号:
DP230102443 - 财政年份:2023
- 资助金额:
$ 50.48万 - 项目类别:
Discovery Projects
FREEpHRI: Flexible, Robust and Efficient physical Human-robot Interaction with iterative learning and self-triggered role adaption
FREEpHRI:灵活、稳健、高效的物理人机交互,具有迭代学习和自我触发的角色适应能力
- 批准号:
EP/V057782/2 - 财政年份:2023
- 资助金额:
$ 50.48万 - 项目类别:
Fellowship
Automatic detection of vaping rate and patterning in the lab and the natural environment using Flexible, Robust Instrumentation of Electronic Nicotine Delivery Systems (FRIENDS)
使用灵活、稳健的电子尼古丁输送系统 (FRIENDS) 仪器自动检测实验室和自然环境中的吸烟率和模式
- 批准号:
10516860 - 财政年份:2022
- 资助金额:
$ 50.48万 - 项目类别:
FREEpHRI: Flexible, Robust and Efficient physical Human-robot Interaction with iterative learning and self-triggered role adaption
FREEpHRI:灵活、稳健、高效的物理人机交互,具有迭代学习和自我触发的角色适应能力
- 批准号:
EP/V057782/1 - 财政年份:2022
- 资助金额:
$ 50.48万 - 项目类别:
Fellowship
Automatic detection of vaping rate and patterning in the lab and the natural environment using Flexible, Robust Instrumentation of Electronic Nicotine Delivery Systems (FRIENDS)
使用灵活、稳健的电子尼古丁输送系统 (FRIENDS) 仪器自动检测实验室和自然环境中的吸烟率和模式
- 批准号:
10664004 - 财政年份:2022
- 资助金额:
$ 50.48万 - 项目类别:
Flexible and robust deep learning models for integrative analysis of single-cell RNA sequencing data
灵活而强大的深度学习模型,用于单细胞 RNA 测序数据的综合分析
- 批准号:
RGPIN-2021-04072 - 财政年份:2022
- 资助金额:
$ 50.48万 - 项目类别:
Discovery Grants Program - Individual
Flexible and robust deep learning models for integrative analysis of single-cell RNA sequencing data
灵活而强大的深度学习模型,用于单细胞 RNA 测序数据的综合分析
- 批准号:
RGPIN-2021-04072 - 财政年份:2021
- 资助金额:
$ 50.48万 - 项目类别:
Discovery Grants Program - Individual
Robust Aeroelastic Tailoring for Highly Flexible Aerostructures using Composite Material
使用复合材料实现高度灵活的航空结构的稳健气动弹性剪裁
- 批准号:
2581922 - 财政年份:2021
- 资助金额:
$ 50.48万 - 项目类别:
Studentship














{{item.name}}会员




