CAREER: Neuromuscular Coordination (NeuroCoord)-Guided Human-Machine Interaction for Quantifying and Improving Motor Function after Stroke
职业:神经肌肉协调 (NeuroCoord) 引导的人机交互,用于量化和改善中风后的运动功能
基本信息
- 批准号:2145321
- 负责人:
- 金额:$ 54.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Stroke is a leading cause of long-term disability in the U.S. It negatively impacts the upper extremity (UE) function. A significant need for effective stroke rehabilitation for the UE remains, owing to the increase in an aging population and stroke survival rates. This Faculty Early Career Development Program (CAREER) project aims to create an adaptive neuromuscular coordination (NeuroCoord)-guided human-machine interaction platform for stroke rehabilitation. The platform will enable researchers to make objective assessments of motor impairment with the brain, muscular, and force data measured in the arm. The study will also allow researchers to design a new, individualized rehabilitation model to improve motor function in the UE after stroke. Successful completion of the project will benefit UE motor function by facilitating movement control as intended. Also, research activities and outcomes will be integrated into education and outreach programs for various students, including underrepresented students and local community members.The investigator’s long-term goal in research is to develop a transformative rehabilitation framework, NeuroCoord-guided adaptive stroke rehabilitation. The framework targets the activation of new intermuscular coordination patterns, through physical interaction with the interface enabling researchers to make objective, multi-modal assessments of motor impairment and design an individualized rehabilitation model for improving motor functions after neurological injuries. This CAREER project will create an adaptive NeuroCoord-guided human-machine interaction platform for automated quantification of motor impairment and design a novel exercise to improve UE motor function after stroke. The Research Plan includes two objectives to develop two important building blocks of the NeuroCoord framework for stroke UE rehabilitation: (1) development and evaluation of a human-machine interaction platform for multi-modal (brain, muscular, and kinetic activity) quantification of motor impairment post-stroke under isometric and several movement conditions and (2) altering abnormal intermuscular coordination by an adaptive NeuroCoord-guided rehabilitation exercise. The project will provide the scientific foundation for designing a novel human-machine interaction platform for stroke rehabilitation, originally motivated by neuromuscular control principles. This human-machine interaction platform is based on the innovative integration of advanced brain imaging technology, a novel rehabilitation robotic device, electromyography, and machine learning principles. The application of the platform has the potential to advance the field’s knowledge for developing automated motor assessment methods with multi-modal signals incorporating changes in cortical organization, muscle coordination, and biomechanical force coupling after the therapeutic exercise.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
中风是美国长期残疾的主要原因,它对上肢(UE)功能产生负面影响。由于人口老龄化和中风存活率的增加,UE仍然需要有效的中风康复。这个教师早期职业发展计划(CAREER)项目旨在创建一个自适应神经肌肉协调(NeuroCoord)指导的人机交互平台,用于中风康复。该平台将使研究人员能够通过测量手臂的大脑、肌肉和力量数据对运动障碍进行客观评估。该研究还将使研究人员能够设计一种新的个性化康复模型,以改善中风后UE的运动功能。项目的成功完成将通过促进预期的运动控制而有益于UE运动功能。此外,研究活动和成果将被整合到教育和推广计划,为各种学生,包括代表性不足的学生和当地社区members.The研究者的长期目标是在研究中开发一个变革性的康复框架,NeuroCoord指导适应性中风康复。该框架的目标是激活新的肌间协调模式,通过与界面的物理交互,使研究人员能够对运动障碍进行客观的多模式评估,并设计个性化的康复模型,以改善神经损伤后的运动功能。这个CAREER项目将创建一个自适应NeuroCoord引导的人机交互平台,用于自动量化运动障碍,并设计一种新的运动来改善中风后的UE运动功能。该研究计划包括两个目标,即开发脑卒中UE康复NeuroCoord框架的两个重要组成部分:(1)多模态人机交互平台的开发与评估(大脑,肌肉,和运动活动)在等长和几种运动条件下中风后运动障碍的量化,以及(2)通过自适应NeuroCoord改变异常的肌间协调,指导康复训练。该项目将为设计一种新颖的脑卒中康复人机交互平台提供科学基础,该平台最初由神经肌肉控制原理驱动。这个人机交互平台基于先进的脑成像技术、新型康复机器人设备、肌电图和机器学习原理的创新整合。该平台的应用有可能推进该领域的知识,开发自动化运动评估方法与多模态信号结合的变化,在皮层组织,肌肉协调,和生物力学力耦合后的治疗exercises.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Expanding the repertoire of intermuscular coordination patterns and modulating intermuscular connectivity in stroke-affected upper extremity through electromyogram-guided training: a pilot study
通过肌电图引导训练扩大中风影响上肢的肌间协调模式并调节肌间连接:一项试点研究
- DOI:10.1109/embc40787.2023.10341085
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Seo, Gang;Houston, Michael;Portilla, Manuel;Fang, Feng;Park, Jeong-Ho;Lee, Hangil;Li, Sheng;Park, Hyung-Soon;Zhang, Yingchun;Roh, Jinsook
- 通讯作者:Roh, Jinsook
Feasibility of Isokinetic Training to Modify Coupling of Upper Limb Muscle Synergy Activation in Stroke-affected Upper Limb
等速训练修改中风上肢上肢肌肉协同激活耦合的可行性
- DOI:10.1109/embc40787.2023.10339985
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Park, Jeong-Ho;Lee, Hangil;Kwon, Hyeok-Jun;Shin, Joon-Ho;Roh, Jinsook;Park, Hyung-Soon
- 通讯作者:Park, Hyung-Soon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinsook Roh其他文献
Compensatory Reaching Strategies After Stroke Saturated Muscle Activation Contributes to
中风后的补偿性到达策略饱和肌肉激活有助于
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
J. Eng;A. Hodgson;Joanne M. Wagner;Jennifer A. Rhodes;C. Patten;M. Levin;J. Kleim;S. Wolf;Chang;A. Jaskólska;A. Jaskólski;V. Sahgal;J. Daly;K. Kisiel;Yin Fang;K. Hrovat;G. Yue;V. Siemionow;Jinsook Roh;W. Rymer;E. Perreault;Seng Bum Yoo;R. Beer - 通讯作者:
R. Beer
Computational modeling and simulation of closed chain arm-robot multibody dynamic systems in OpenSim
OpenSim中闭链臂机器人多体动力学系统的计算建模与仿真
- DOI:
10.1007/s11044-022-09847-8 - 发表时间:
2022 - 期刊:
- 影响因子:3.4
- 作者:
Matthew Green;Yoon No Gregory Hong;Jinsook Roh;B. Fregly - 通讯作者:
B. Fregly
Muscle Synergies: Use and Validation in Clinics, Robotics, and Sports
肌肉协同作用:在临床、机器人和运动中的使用和验证
- DOI:
10.1155/2018/6345256 - 发表时间:
2018 - 期刊:
- 影响因子:2.2
- 作者:
S. Rossi;P. Artemiadis;Jinsook Roh;V. Agostini - 通讯作者:
V. Agostini
Feasibility of inducing new intermuscular coordination patterns through an electromyographic signal-guided training in the upper extremity: a pilot study
通过上肢肌电信号引导训练诱导新的肌间协调模式的可行性:一项试点研究
- DOI:
10.1109/embc46164.2021.9630089 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Gang Seo;Jeong;Hyung‐Soon Park;Jinsook Roh - 通讯作者:
Jinsook Roh
Electro-tactile modulation of muscle activation and intermuscular coordination in the human upper extremity
- DOI:
10.1038/s41598-025-86342-y - 发表时间:
2025-01-20 - 期刊:
- 影响因子:3.900
- 作者:
Hy Doan;Shahabedin Tavasoli;Gang Seo;Hyung-Soon Park;Hangue Park;Jinsook Roh - 通讯作者:
Jinsook Roh
Jinsook Roh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Deep learning-based prediction model for intraoperative neuromuscular blockade
基于深度学习的术中神经肌肉阻滞预测模型
- 批准号:
23K14406 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Does toe flexion strength training induce neuromuscular adaptations in plantar intrinsic foot muscles?
脚趾屈曲力量训练是否会引起足底内在足部肌肉的神经肌肉适应?
- 批准号:
23K19908 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Hybrid neuroscience based on cerebral and muscular information for motor rehabilitation and neuromuscular disorders (HybridNeuro)
基于大脑和肌肉信息的混合神经科学,用于运动康复和神经肌肉疾病 (HybridNeuro)
- 批准号:
10052152 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别:
EU-Funded
: Next-generation models and genetic therapies for rare neuromuscular diseases
:罕见神经肌肉疾病的下一代模型和基因疗法
- 批准号:
10080927 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别:
EU-Funded
Human-iPSC derived neuromuscular junctions as a model for neuromuscular diseases.
人 iPSC 衍生的神经肌肉接头作为神经肌肉疾病的模型。
- 批准号:
10727888 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别:
Assessing the impact of ALS Mutations on mRNA Translation in hiPSC-derived Neurons and Neuromuscular Models
评估 ALS 突变对 hiPSC 衍生神经元和神经肌肉模型中 mRNA 翻译的影响
- 批准号:
2888991 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别:
Studentship
Determining the effects of increased demands for voluntary adjustments on the neuromuscular control of walking post-stroke
确定自愿调整需求增加对中风后行走神经肌肉控制的影响
- 批准号:
10596397 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别:
Japan_IPAP: Engineering synthetic neuromuscular junctions to drive the autonomous function of biohybrid robots
Japan_IPAP:工程合成神经肌肉接头以驱动生物混合机器人的自主功能
- 批准号:
BB/X012581/1 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别:
Research Grant
MAGIC - Next-generation models and genetic therapies for rare neuromuscular diseases
MAGIC - 罕见神经肌肉疾病的下一代模型和基因疗法
- 批准号:
10078461 - 财政年份:2023
- 资助金额:
$ 54.45万 - 项目类别:
EU-Funded