CAREER: Tuning Topology and Strong Correlations for the Next Generation of Topological Superconductors

职业:调整下一代拓扑超导体的拓扑和强相关性

基本信息

  • 批准号:
    2145373
  • 负责人:
  • 金额:
    $ 68.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).NON-TECHNICAL DESCRIPTION: A theoretically predicted quantum matter – a topological superconductor – not only conducts electricity with zero resistance but also protects its innate quantum properties from material imperfections. Experimentally realizing this new material is key to enabling future fault-tolerant quantum computers which can outperform classical computers by orders-of-magnitude. Yet, the existence of such materials remains elusive. This project supported by the Condensed Matter Physics program in the Division of Materials Research utilizes atomic-level layer-by-layer construction to fabricate new generations of topological superconductors, and performs advanced material characterizations to establish the evidence for this new state of matter. This project provides a substantial step forward to realize topological superconductors at temperatures achievable by industrial cryogenics. It can have profound impacts in not only condensed matter physics but also broadly in quantum science and engineering: new quantum computing architectures and protocols can be built on top of this material discovery. The research effort is integrated with an education and outreach theme “Immersive Quantum Material Education” to train students at graduate, undergraduate, and high-school levels. The research results are disseminated through dedicated activities such as the “UChicago Quantum Quickstart” workshop for 9th-to-11th grade students with demonstrated 34% participation from under-represented minority groups. Graduate students trained through this project can advance their careers in academia or in the emerging quantum engineering industry, forming the workforce for the future and ensuring the American leadership in both quantum sciences and quantum economy.TECHNICAL DESCRIPTION: Topological superconductors are a new class of superconductors predicted to enable fault-tolerant quantum computing. Current material platforms for putative topological superconductors are based on heterostructures of conventional superconductors and semiconductors, and require sophisticated engineering only to work at temperatures below 1 Kelvin. Yet, the conclusive test of topological superconductivity remains elusive. The goals of this project are three-fold: 1) performing atomic-level structural tuning of FeTeSe/oxides to optimize the topological electronic properties using molecular beam epitaxy; 2) performing femtosecond dynamical tuning of FeTeSe/oxides to reveal the relationship between topology and electron-electron interactions using time-resolved photoemission; 3) testing non-Abelian anyon statistics by fabricating topological quantum devices using molecular beam epitaxy with shadow masks. This project can substantially advance the field of topological materials by addressing the urgent questions on the existence and optimization of topological superconductors, and provide transformative insights into the relationship between topological superconductivity and strong electron-electron interactions. In the education and outreach theme “Immersive Quantum Material Education,” the principal investigator engages with students at all levels on the cutting-edge research on topological materials. Workshops such as the “MASTER Summer School” for undergraduate students and “Certificate in Quantum Engineering and Technology” for industrial workers promote awareness among the public on topological superconductivity, benefiting students from under-represented minority groups. The educational effort establishes the principal investigator’s laboratory as an anchor to facilitate general education on quantum science and engineering in South Side Chicago.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的部分资金来自2021年美国救援计划法案(公法117-2)。非技术描述:理论上预测的量子物质--一种拓扑超导体--不仅以零电阻导电,而且还保护其固有的量子特性不受材料缺陷的影响。通过实验实现这种新材料是实现未来容错量子计算机的关键,这种计算机的性能可以比经典计算机高出几个数量级。然而,这种材料的存在仍然难以捉摸。该项目得到材料研究部凝聚态物理计划的支持,利用原子级的逐层结构来制备新一代拓扑超导体,并进行先进的材料表征,以建立这种新的物质状态的证据。该项目向在工业低温可达到的温度下实现拓扑超导体迈出了实质性的一步。它不仅可以对凝聚态物理产生深远的影响,还可以广泛地影响量子科学和工程:可以在这种材料发现的基础上建立新的量子计算体系结构和协议。这项研究工作与教育和外展主题“身临其境的量子材料教育”相结合,以培养研究生、本科生和高中学生。研究成果通过专门的活动传播,例如为9至11年级学生举办的“UChicago Quantum QuickStart”研讨会,表明34%的参与者来自代表性不足的少数群体。通过这个项目培养的研究生可以在学术界或新兴的量子工程行业推进他们的职业生涯,形成未来的劳动力,并确保美国在量子科学和量子经济方面的领导地位。技术描述:拓扑超导体是一种新的超导体,预计将实现容错量子计算。目前用于拓扑超导体的材料平台是基于传统超导体和半导体的异质结构,需要复杂的工程才能在低于1开尔文的温度下工作。然而,拓扑超导电性的决定性测试仍然难以捉摸。该项目的目标有三个:1)利用分子束外延对FeTeSe/氧化物进行原子级结构调整,以优化其拓扑电子性质;2)利用时间分辨光电子能谱对FeTeSe/氧化物进行飞秒动力学调整,以揭示拓扑与电子-电子相互作用之间的关系;3)通过使用带有荫罩的分子束外延制造拓扑量子器件,测试非阿贝尔任意子统计。这一项目可以通过解决拓扑超导体的存在和优化的迫切问题,极大地推动拓扑材料领域的发展,并为拓扑超导和强电子-电子相互作用之间的关系提供变革性的见解。在“身临其境的量子材料教育”的教育和推广主题中,首席研究员与所有级别的学生就拓扑材料的前沿研究进行接触。为本科生举办的“大师暑期班”和为产业工人举办的“量子工程和技术证书”等工作坊,提高了公众对拓扑超导的认识,使代表不足的少数群体的学生受益。这项教育工作建立了首席研究员实验室,作为促进芝加哥南部量子科学和工程普通教育的支柱。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Layer-by-layer disentanglement of Bloch states
  • DOI:
    10.1038/s41567-023-02008-4
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Woojoo Lee;Sebastian Fernandez-Mulligan;Hengxin Tan;Chenhui Yan;Yingdong Guan;S. Lee;Ruobing Mei
  • 通讯作者:
    Woojoo Lee;Sebastian Fernandez-Mulligan;Hengxin Tan;Chenhui Yan;Yingdong Guan;S. Lee;Ruobing Mei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shuolong Yang其他文献

Shuolong Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shuolong Yang', 18)}}的其他基金

EAGER: Quantum Manufacturing: In-situ Nano-Patterned Topological Josephson Junctions
EAGER:量子制造:原位纳米图案拓扑约瑟夫森结
  • 批准号:
    2240489
  • 财政年份:
    2023
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Standard Grant
MRI: Development of a Miniaturized Molecular Beam Epitaxy Setup for Direct Printing of Quantum Circuits
MRI:开发用于直接打印量子电路的小型化分子束外延装置
  • 批准号:
    2019131
  • 财政年份:
    2020
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Standard Grant

相似海外基金

Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Studentship
CAS-SC: Tuning Hydrocarbon Products from Temperature-Gradient Thermolysis of Polyolefins and the Subsequent Upcycling to Functional Chemicals
CAS-SC:调整聚烯烃温度梯度热解的碳氢化合物产品以及随后升级为功能化学品
  • 批准号:
    2411680
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Standard Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Standard Grant
Tuning catalyst reaction environments towards photoreforming of wastewater
调整催化剂反应环境以实现废水的光重整
  • 批准号:
    DP240100687
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Discovery Projects
Tuning near-infrared photosynthesis
调节近红外光合作用
  • 批准号:
    BB/X015858/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Research Grant
Tuning near-infrared photosynthesis
调节近红外光合作用
  • 批准号:
    BB/X015955/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Research Grant
Tuning Large language models to read biological literature
调整大型语言模型以阅读生物文献
  • 批准号:
    BB/Y514032/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
  • 批准号:
    24K20737
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tuning into plant development to improve the sustainability of arable farming
调整植物开发以提高耕作的可持续性
  • 批准号:
    MR/Y011708/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了