CAREER: Infinitely many new universality classes of hydrodynamics

职业:无数新的流体动力学通用类别

基本信息

  • 批准号:
    2145544
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis award supports research and education towards discovering new kinds of fluids that can exist in nature. The most well-known fluids are liquid water or the air around us. The equations that govern such liquids and gases have been understood for hundreds of years. More recently, fluid-like behavior has also been discovered in gases of ultracold atoms, electrons flowing through metals, and even in plasmas of quarks and gluons created at high energy particle colliders. The PI has recently predicted infinite families of exotic generalizations of these previously discovered fluids. The goal of this project is to develop a systematic way of classifying and understanding new kinds of hydrodynamic behavior and to predict how to discover these new fluids in experiments with ultracold atoms and quantum materials. The proposed activities will lead to a more systematic approach to predicting the collective behavior of a broad range of physical systems, ranging from quantum fluids of electrons or spins in metals, to the dynamics of liquid crystals and other soft or active matter, and even to the collective behaviors of non-equilibrium biological systems such as bacterial suspensions or flocks. This award also supports educational and outreach activities, including the development of a new course on modern hydrodynamics to be delivered to senior-level undergraduate and first-year graduate students. Rather than focusing on the physics of everyday liquids or gases, as is done in conventional treatments of the subject, this new course will emphasize all of the many physical settings in which hydrodynamics arises in both classical and quantum fluids: the atmosphere, electron liquids, quark-gluon plasma, liquid crystals, and the collective motion of living organisms. These efforts will culminate in a set of book-like lecture notes, which will be freely available to the public. The PI also will lead a summer school, tentatively scheduled for July 2025, at which a broad and diverse set of the nation's top graduate students will learn about cutting edge advances in condensed matter physics. Undergraduate and graduate student researchers will participate in the activities funded by this award, and the PI will further disseminate results through public lectures aimed at his local community through departmental outreach programs.TECHNICAL SUMMARY This award supports research and education towards the discovery and classification of infinitely many new universality classes of hydrodynamics, and infinitely many new non-equilibrium dynamical fixed points which generalize the Kardar-Parisi-Zhang universality class. The research has three main thrusts. (1) The discovery of many new universality classes of hydrodynamics, which arise in constrained quantum systems with multipole and/or subsystem symmetries. By incorporating further conservation laws such as momentum, or by breaking spacetime symmetries, these hydrodynamic theories can become unstable in the presence of thermal fluctuations, and flow to new non-equilibrium universality classes. (2) The PI will develop new effective field theory methods to systematically predict and analyze these new universality classes. These field theories will naturally describe nonlinear fluctuating hydrodynamics and help lead to better understandings of the foundations of statistical physics (including fluctuation-dissipation theorems and the existence of thermodynamics) in far-from-equilibrium settings. The mathematical methods developed will also help to uncover if and when exotic non-relativistic fracton matter can be coupled consistently to gravity. (3) Lastly, the PI will work to predict experimental realizations of these new kinds of fluids. Two natural settings include Fermi-Hubbard-like models in ultracold atoms confined in tilted optical lattices, and frustrated quantum magnets. The PI will deduce the appropriate hydrodynamic description for these exotic dynamical systems, which are expected to lead to the discovery of exotic generalizations of magnetohydrodynamics and other models with higher-form symmetries. Together, these three thrusts will help usher in a more systematic and predictive approach to hydrodynamics in classical and quantum many-particle systems with unconventional symmetries. This award also supports educational and outreach activities, including the development of a course on hydrodynamics as an effective field theory for first-year graduate students and senior undergraduate students. Course materials from this class, including an eventual set of lecture notes, will be freely available to the public. The PI will also lead a summer school on dynamics in strongly correlated quantum materials, helping to train the diverse next generation of physicists in the state-of-the-art in the field. Undergraduate and graduate student researchers will participate in the activities funded by this award, and the PI will further disseminate results through public lectures aimed at his local community through departmental outreach programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结该奖项支持研究和教育,以发现自然界中可能存在的新型流体。最著名的流体是液态水或我们周围的空气。控制这些液体和气体的方程已经被理解了几百年。 最近,在超冷原子的气体、流过金属的电子,甚至在高能粒子对撞机产生的夸克和胶子的等离子体中也发现了类似流体的行为。 PI最近预测了这些以前发现的流体的奇异推广的无限家族。该项目的目标是开发一种系统的方法来分类和理解新型流体动力学行为,并预测如何在超冷原子和量子材料的实验中发现这些新流体。拟议的活动将带来一种更系统的方法来预测广泛物理系统的集体行为,范围从金属中电子或自旋的量子流体,到液晶和其他软物质或活性物质的动力学,甚至到集体行为细菌悬浮液或菌群等非平衡生物系统的行为。 该奖项还支持教育和推广活动,包括开发一门新的现代流体力学课程,提供给高年级本科生和一年级研究生。而不是专注于日常液体或气体的物理学,因为是在该主题的传统治疗,这门新课程将强调所有的许多物理环境中,流体力学出现在经典和量子流体:大气,电子液体,夸克胶子等离子体,液晶和活生物体的集体运动。 这些努力将最终形成一套类似书本的课堂讲稿,并将免费提供给公众。PI还将领导一个暑期学校,暂定于2025年7月,在那里,一个广泛而多样化的国家的顶尖研究生将学习凝聚态物理学的前沿进展。 本科生和研究生研究人员将参与该奖项资助的活动,PI将通过部门外展计划,通过针对当地社区的公开讲座进一步传播成果。技术概要该奖项支持研究和教育,以发现和分类无限多个新的流体力学普适性类,和无穷多个新的非平衡动力学不动点,推广了Kardar-Parisi-Zhang普适类.这项研究有三个主要目标。(1)发现了许多新的流体力学普适类,它们出现在具有多极和/或子系统对称性的约束量子系统中。 通过引入更多的守恒定律,比如动量守恒定律,或者打破时空对称性,这些流体动力学理论在热涨落的存在下会变得不稳定,并流向新的非平衡普适类。 (2)PI将开发新的有效的场论方法来系统地预测和分析这些新的普适类。这些场论将自然地描述非线性波动流体力学,并有助于更好地理解远离平衡设置的统计物理学基础(包括波动耗散定理和热力学的存在)。开发的数学方法也将有助于揭示外来的非相对论性分形物质是否以及何时可以与引力一致地耦合。 (3)最后,PI将致力于预测这些新型流体的实验实现。两个自然的设置包括费米-哈伯德类模型在超冷原子限制在倾斜的光学晶格,和挫折的量子磁铁。PI将推导出适当的流体动力学描述这些外来的动力系统,这有望导致发现外来的广义磁流体力学和其他模型与更高形式的对称性。 总之,这三个推力将有助于引入一个更系统和预测的方法,在经典和量子多粒子系统与非常规对称性的流体力学。该奖项还支持教育和推广活动,包括为一年级研究生和高年级本科生开发流体力学课程作为有效的场论。这门课的教材,包括最终的一套课堂讲稿,将免费提供给公众。 PI还将领导一个关于强相关量子材料动力学的暑期学校,帮助培训该领域最先进的多元化下一代物理学家。 本科生和研究生研究人员将参与该奖项资助的活动,PI将通过部门外展计划,通过针对当地社区的公开讲座进一步传播成果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hydrodynamic effective field theories with discrete rotational symmetry
具有离散旋转对称性的流体动力有效场理论
  • DOI:
    10.1007/jhep03(2022)082
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Huang, Xiaoyang;Lucas, Andrew
  • 通讯作者:
    Lucas, Andrew
Anomalous hydrodynamics with triangular point group in 2+1 dimensions
2 1 维三角形点群反常流体动力学
  • DOI:
    10.1103/physrevb.107.144305
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Qi, Marvin;Guo, Jinkang;Lucas, Andrew
  • 通讯作者:
    Lucas, Andrew
Fracton Hydrodynamics without Time-Reversal Symmetry
无时间反演对称性的分形流体动力学
  • DOI:
    10.1103/physrevlett.129.150603
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Guo, Jinkang;Glorioso, Paolo;Lucas, Andrew
  • 通讯作者:
    Lucas, Andrew
Goldstone bosons and fluctuating hydrodynamics with dipole and momentum conservation
  • DOI:
    10.1007/jhep05(2023)022
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Paolo Glorioso;Xiaoyang Huang;Jinkang Guo;J. Rodriguez-Nieva;Andrew Lucas
  • 通讯作者:
    Paolo Glorioso;Xiaoyang Huang;Jinkang Guo;J. Rodriguez-Nieva;Andrew Lucas
Breakdown of hydrodynamics below four dimensions in a fracton fluid
  • DOI:
    10.1038/s41567-022-01631-x
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Paolo Glorioso;Jinkang Guo;J. Rodriguez-Nieva;A. Lucas
  • 通讯作者:
    Paolo Glorioso;Jinkang Guo;J. Rodriguez-Nieva;A. Lucas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Lucas其他文献

Symplectic Geometry and Circuit Quantization
辛几何和电路量化
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    A. Osborne;T. Larson;Sarah Jones;R. Simmonds;A. Gyenis;Andrew Lucas
  • 通讯作者:
    Andrew Lucas
Locality bounds for quantum dynamics at low energy
低能量子动力学的局域性界限
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Andrew Osborne;Chao Yin;Andrew Lucas
  • 通讯作者:
    Andrew Lucas
Infinite families of fracton fluids with momentum conservation
具有动量守恒的分形流体的无限族
  • DOI:
    10.1103/physrevb.105.024311
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    A. Osborne;Andrew Lucas
  • 通讯作者:
    Andrew Lucas
Prethermalization and the Local Robustness of Gapped Systems.
有间隙系统的预热和局部鲁棒性。
  • DOI:
    10.1103/physrevlett.131.050402
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Chao Yin;Andrew Lucas
  • 通讯作者:
    Andrew Lucas
Polynomial-time classical sampling of high-temperature quantum Gibbs states
高温量子吉布斯态的多项式时间经典采样
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chao Yin;Andrew Lucas
  • 通讯作者:
    Andrew Lucas

Andrew Lucas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Lucas', 18)}}的其他基金

Collaborative research: Coastal inertial-band dynamics: separating forced and free responses in a natural laboratory
合作研究:沿海惯性带动力学:在自然实验室中分离受迫响应和自由响应
  • 批准号:
    1635163
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Assessing the Ecophysiological and Biogeochemical Response to Deliberate Nutrient Loading in the Southern California Bight
合作研究:RAPID:评估南加州湾对蓄意营养物负荷的生态生理和生物地球化学反应
  • 批准号:
    1251547
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
International Research Fellowship Program: A Comparison of HAB Dynamics in Two Upwelling Regions Using Novel Technology
国际研究奖学金计划:利用新技术比较两个上升流区域的 HAB 动态
  • 批准号:
    0853106
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship

相似海外基金

Symplectic topology of Hamiltonian systems with infinitely many periodic orbits
具有无限多个周期轨道的哈密顿系统的辛拓扑
  • 批准号:
    1414685
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Dirichlet series and complex analysis for functions in infinitely many variables
无限多变量函数的狄利克雷级数和复分析
  • 批准号:
    241577739
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grants
Investigations in Multiple Kernel Learning, in particular the rigorous analysis of algorithms when learning to combine infinitely many kernels
多核学习的研究,特别是学习组合无限多个核时算法的严格分析
  • 批准号:
    443151-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Symplectic topology of Hamiltonian systems with infinitely many periodic orbits
具有无限多个周期轨道的哈密顿系统的辛拓扑
  • 批准号:
    1207680
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Dynamical Properties of Quantum Systems with Infinitely Many Degrees of Freedom
无限多自由度量子系统的动力学特性
  • 批准号:
    0905988
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Symplectic Topology of Hamiltonian Systems with Infinitely Many Periodic Orbits
具有无限多个周期轨道的哈密顿系统的辛拓扑
  • 批准号:
    0906204
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Empirical likelihood with infinitely many constraints
具有无限多个约束的经验似然
  • 批准号:
    0906551
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Theory of Family of Learnings-From a Single Learning to Infinitely Many Learning-
学习族理论-从单一学习到无限多学习-
  • 批准号:
    14380158
  • 财政年份:
    2002
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学物理中具有无限多个自由度的动力系统
  • 批准号:
    9896208
  • 财政年份:
    1997
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学物理中具有无限多个自由度的动力系统
  • 批准号:
    9501226
  • 财政年份:
    1995
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了