Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学物理中具有无限多个自由度的动力系统
基本信息
- 批准号:9501226
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-01 至 1998-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9501226 Wayne Professor Wayne's research will focus on a variety of partial differential equations which arise in mathematical physics. He will attempt to use ideas from dynamical systems theory to understand the geometrical structure of the phase space of these systems, and how this structure influences the solutions of these equations. He will study two main classes of equations -- Hamiltonian partial differential equations, and dissipative equations. In the first context, he will be concerned with extending the applications of tools like the Kolmogorov-Arnold-Moser theory which have proven useful in the context of finite dimensional Hamiltonian dynamical systems to this infinite dimensional context and also in understanding the stability of the resulting solutions. In the context of dissipative equations he will apply both invariant manifold theorems and the renormalization group to study the long-time asymptotics of such equations, particularly in cases in which the linearized equation has continuous spectrum. %%% Wayne's research will focus on the behavior of solutions of differential equations which arise in mathematical physics. These equations have solutions which may behave in a very complicated fashion, and Professor Wayne will develop new techniques for understanding their behavior. In simpler examples the key to this understanding has often been the elucidation of certain key geometrical structures related to the solutions of these equations, and Professor Wayne's research will concentrate on discovering whether analogues of these structures exist in the more complicated, infinite dimensional contexts that arise in his applications. The sorts of equations which he will study arise in the propagation of waves on the surface of a fluid, the vibrations of crystals, and chemical reactions. ***
9501226韦恩韦恩教授的研究将集中在各种偏微分方程出现在数学物理。 他将尝试使用动力系统理论的思想来理解这些系统的相空间的几何结构,以及这种结构如何影响这些方程的解。 他将研究两个主要类别的方程-汉密尔顿偏微分方程和耗散方程。 在第一种情况下,他将关注扩展的工具,如Kolmogorov,阿诺德,莫泽理论已被证明是有用的背景下,有限维哈密顿动力系统这一无限维的背景下,也在理解稳定的解决方案。 在耗散方程的背景下,他将同时应用不变流形定理和重整化群来研究此类方程的长时间渐近性,特别是在线性化方程具有连续谱的情况下。 %韦恩的研究将集中在行为的解决方案的微分方程出现在数学物理。 这些方程的解可能以非常复杂的方式表现,韦恩教授将开发新的技术来理解它们的行为。 在简单的例子中,这种理解的关键往往是阐明与这些方程的解相关的某些关键几何结构,韦恩教授的研究将集中在发现这些结构的类似物是否存在于更复杂的无限维的背景下,出现在他的应用程序。 这类方程,他将研究出现在传播波的表面上的流体,振动的晶体,和化学反应。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clarence Wayne其他文献
Clarence Wayne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clarence Wayne', 18)}}的其他基金
Dynamical Systems Methods for Fluid Mechanics and Hamiltonian Mechanics
流体力学和哈密顿力学的动力系统方法
- 批准号:
1813384 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Dynamical Systems Methods for Partial Differential Equations
偏微分方程的动力系统方法
- 批准号:
1311553 - 财政年份:2013
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Infinite Dimensional Dynamical Systems and Partial Differential Equations
无限维动力系统和偏微分方程
- 批准号:
0908093 - 财政年份:2009
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Special meeting: Dynamical systems and evolution equations, CRM
特别会议:动力系统和演化方程,CRM
- 批准号:
0803140 - 财政年份:2008
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Workshop on Mathematical Hydrodynamics at the Steklov Institute; Moscow, Russia; June 12-17, 2006
斯特克洛夫研究所数学流体动力学研讨会;
- 批准号:
0543432 - 财政年份:2005
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Dynamical Systems Approaches to Partial Differential Equations
偏微分方程的动力系统方法
- 批准号:
0103915 - 财政年份:2001
- 资助金额:
$ 9万 - 项目类别:
Continuing grant
Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学物理中具有无限多个自由度的动力系统
- 批准号:
9896208 - 财政年份:1997
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学科学:数学物理中具有无限多个自由度的动力系统
- 批准号:
9203359 - 财政年份:1992
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学科学:数学物理中具有无限多个自由度的动力系统
- 批准号:
9002059 - 财政年份:1990
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Ordered and Chaotic Motions in Hamiltonian Systems
数学科学:哈密顿系统中的有序运动和混沌运动
- 批准号:
8802118 - 财政年份:1988
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
- 批准号:
10109981 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
EU-Funded
FABB-HVDC (Future Aerospace power conversion Building Blocks for High Voltage DC electrical power systems)
FABB-HVDC(高压直流电力系统的未来航空航天电力转换构建模块)
- 批准号:
10079892 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Legacy Department of Trade & Industry
Digital chemistry and catalysis: redefining reactions in confined systems
数字化学和催化:重新定义受限系统中的反应
- 批准号:
FL220100059 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Australian Laureate Fellowships
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
- 批准号:
DP240100506 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Discovery Projects
Linking Australia’s basement and cover mineral systems
连接澳大利亚的地下室和覆盖矿物系统
- 批准号:
DE240101283 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Discovery Early Career Researcher Award
Phase Averaged Deferred Correction for Multi-Timescale Systems
多时间尺度系统的相位平均延迟校正
- 批准号:
EP/Y032624/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant
Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
- 批准号:
MR/Y011635/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Fellowship
Managing the Activity of Pollinators in Protected Cropping Systems (MAPP-CS)
管理保护性耕作系统中授粉媒介的活动 (MAPP-CS)
- 批准号:
BB/Z514366/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant
SONNETS: Scalability Oriented Novel Network of Event Triggered Systems
SONNETS:面向可扩展性的事件触发系统新型网络
- 批准号:
EP/X036006/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant