CAREER: Multiphysics Mechanics of Magnetic Shape Memory Polymers

职业:磁性形状记忆聚合物的多物理力学

基本信息

  • 批准号:
    2145601
  • 负责人:
  • 金额:
    $ 54.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development Program (CAREER) grant investigates multiple physical behaviors of magnetic shape memory polymers. The shape memory effect refers to the ability of a material to remember and recover a pre-programmed shape in response to a combination of magnetic and mechanical fields. These materials are composites with embedded magnetic particles in shape memory polymer matrices. They utilize superposed alternating and direct magnetic fields to regulate the stiffness and shape changing actuation of the materials. They combine untethered fast and reversible transformation, shape-locking ability, and reprogrammability in one material system and have potential applications in soft robots, flexible electronics, and biomedical devices for minimum invasive surgery. However, the complicated magneto-thermo-viscoelastic behaviors of these materials make the design of applications using these materials very challenging. The success of this work will lead to a systematic understanding of the magnetic shape memory polymer, a material model to describe the magneto-thermo-viscoelastic behavior and a multiphysics simulation platform to accelerate the design of applications. This work will provide hands-on interactive multi-disciplinary research experience for middle and high school students through 3D Printed Magnetically Actuated Soft Robots. This work will also demonstrate material research to K-12 students and the general public through the local Science and Industry Science Festival and the Ohio State University STEAM factory Franklinton Friday Events. Soft active materials are widely used but have limitations such as slow actuation speed, irreversible actuation, or no shape-locking. Magnetic shape memory polymers overcome these limitations by integrating rapid magnetic actuation with shape memory effects in polymers. These materials use the alternative current magnetic field to control the temperature and the direct current magnetic field to actuate the materials. The coupling of magnetic actuation with thermoviscoelastic material behavior demands intensive fundamental mechanics research. This CAREER award will provide new understandings on how the interactions among magnetic particles and magnetic particles-polymer matrix can alter the thermoviscoelastic and shape memory behavior of a polymer. These understandings will enable the establishment of a thermodynamic framework for magneto-thermo-viscoelastic solids. The new framework can provide a clear description of the complicated multiphysics processes and guide the development of a new constitutive model for magneto-thermo-viscoelastic solids. The new constitutive model will be implemented into finite element analysis to simulate the magnetic and thermal actuation of magnetic shape memory polymers with complicated geometry and complicated loading conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师早期职业发展计划(CAREER)资助研究磁性形状记忆聚合物的多种物理行为。 形状记忆效应是指材料响应于磁场和机械场的组合而记忆和恢复预编程形状的能力。 这些材料是在形状记忆聚合物基质中嵌入磁性颗粒的复合材料。它们利用叠加的交变和直接磁场来调节材料的刚度和形状改变致动。它们结合了联合收割机在一个材料系统中的不受约束的快速和可逆的转换,形状锁定能力和可重新编程性,并在软机器人,柔性电子和生物医学设备中具有潜在的应用,用于微创手术。然而,这些材料复杂的磁热粘弹性行为使得使用这些材料的应用设计非常具有挑战性。这项工作的成功将导致磁性形状记忆聚合物,材料模型来描述磁热粘弹性行为和多物理场仿真平台,以加速应用程序的设计的系统的理解。这项工作将通过3D打印磁致动软机器人为初中和高中学生提供动手互动的多学科研究经验。这项工作还将通过当地的科学和工业科学节和俄亥俄州州立大学蒸汽工厂弗兰克林顿星期五活动向K-12学生和公众展示材料研究。软活性材料被广泛使用,但具有诸如致动速度慢、不可逆致动或没有形状锁定的限制。磁性形状记忆聚合物通过将快速磁致动与聚合物中的形状记忆效应相结合来克服这些限制。这些材料利用交流磁场来控制温度,利用直流磁场来驱动材料。磁致动与热粘弹性材料行为的耦合需要深入的基础力学研究。该CAREER奖将提供关于磁性颗粒和磁性颗粒-聚合物基质之间的相互作用如何改变聚合物的热粘弹性和形状记忆行为的新理解。这些理解将使磁热粘弹性固体的热力学框架的建立。新的框架可以提供一个清晰的描述复杂的多物理过程,并指导一个新的本构模型的磁热粘弹性固体的发展。新的本构模型将被应用到有限元分析中,以模拟具有复杂几何形状和复杂载荷条件的磁性形状记忆聚合物的磁致动和热致动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Autonomous alignment and healing in multilayer soft electronics using immiscible dynamic polymers
  • DOI:
    10.1126/science.adh0619
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Christopher B. Cooper;Samuel E. Root;Lukas Michalek;Shuai Wu;J. Lai;Muhammad Khatib;Solomon T. Oyakhire;Renee Zhao;Jian Qin;Zhenan Bao
  • 通讯作者:
    Christopher B. Cooper;Samuel E. Root;Lukas Michalek;Shuai Wu;J. Lai;Muhammad Khatib;Solomon T. Oyakhire;Renee Zhao;Jian Qin;Zhenan Bao
Mechanics of hard-magnetic soft materials: A review
  • DOI:
    10.1016/j.mechmat.2023.104874
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Lu Lu-Lu;Jay Sim;Ruike Renee Zhao
  • 通讯作者:
    Lu Lu-Lu;Jay Sim;Ruike Renee Zhao
Magneto-Mechanical Metamaterials: A Perspective
4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing
  • DOI:
    10.1002/adma.202204890
  • 发表时间:
    2022-08-29
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Peng, Xirui;Wu, Shuai;Qi, H. Jerry
  • 通讯作者:
    Qi, H. Jerry
Magnetically Actuated Reconfigurable Metamaterials as Conformal Electromagnetic Filters
  • DOI:
    10.1002/aisy.202200106
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Shuai Wu;Jack Eichenberger;Jize Dai;Yilong Chang;N. Ghalichechian;R. Zhao
  • 通讯作者:
    Shuai Wu;Jack Eichenberger;Jize Dai;Yilong Chang;N. Ghalichechian;R. Zhao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruike Renee Zhao其他文献

Buckling and post-buckling of cylindrical shells under combined torsional and axial loads
圆柱壳在扭转载荷与轴向载荷共同作用下的屈曲与后屈曲
  • DOI:
    10.1016/j.euromechsol.2025.105653
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Lu Lu;Sophie Leanza;Yang Liu;Ruike Renee Zhao
  • 通讯作者:
    Ruike Renee Zhao
The elastica with pre-stress due to natural curvature
由于自然曲率而具有预应力的松紧带
Reconfiguration of Electromagnetic Metasurfaces Using Tunable Shape Morphing Structures
使用可调谐形状变形结构重构电磁超表面
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David L. West;William Pavlick;Jay Sim;Jize Dai;Shuai Wu;Jack Eichenberger;Ruike Renee Zhao;N. Ghalichechian
  • 通讯作者:
    N. Ghalichechian
Machine learning-enabled forward prediction and inverse design of 4D-printed active plates
基于机器学习的 4D 打印活性板的正向预测和逆向设计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Xiaohao Sun;Liang Yue;Luxia Yu;Connor T Forte;Connor D. Armstrong;Kun Zhou;Frédéric Demoly;Ruike Renee Zhao;H. J. Qi
  • 通讯作者:
    H. J. Qi
Milli-spinner thrombectomy
微旋切取栓术
  • DOI:
    10.1038/s41586-025-09049-0
  • 发表时间:
    2025-06-04
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Yilong Chang;Shuai Wu;Qi Li;Benjamin Pulli;Darren Salmi;Paul Yock;Jeremy J. Heit;Ruike Renee Zhao
  • 通讯作者:
    Ruike Renee Zhao

Ruike Renee Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruike Renee Zhao', 18)}}的其他基金

Collaborative Research: Reconfigurable Intelligent Electromagnetic Surface Using Magnetic Shape Memory Polymers
合作研究:使用磁性形状记忆聚合物的可重构智能电磁表面
  • 批准号:
    2300157
  • 财政年份:
    2023
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Autonomy of Origami-inspired Transformable Systems in Space Operations
合作研究:CPS:媒介:太空作战中受折纸启发的可变换系统的自主性
  • 批准号:
    2201344
  • 财政年份:
    2022
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Standard Grant
Micromechanics of Interactions Between Hard Magnetic Particles and Soft Matrix on Magneto-Mechanical Actuation
磁机械驱动中硬磁颗粒与软基体相互作用的微观力学
  • 批准号:
    2142789
  • 财政年份:
    2021
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Origami-Based Extremely-Packed Multistable Pop-Up Design for Medical Masks
EAGER:合作研究:基于折纸的超密集多稳态弹出式医用口罩设计
  • 批准号:
    2029643
  • 财政年份:
    2020
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Standard Grant
CAREER: Multiphysics Mechanics of Magnetic Shape Memory Polymers
职业:磁性形状记忆聚合物的多物理力学
  • 批准号:
    1943070
  • 财政年份:
    2020
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Standard Grant
Micromechanics of Interactions Between Hard Magnetic Particles and Soft Matrix on Magneto-Mechanical Actuation
磁机械驱动中硬磁颗粒与软基体相互作用的微观力学
  • 批准号:
    1939543
  • 财政年份:
    2020
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Standard Grant

相似海外基金

Modelling and simulation of biofluid mechanics with multiphysics and multiple scales
多物理场、多尺度生物流体力学建模与仿真
  • 批准号:
    RGPIN-2021-04088
  • 财政年份:
    2022
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling and simulation of biofluid mechanics with multiphysics and multiple scales
多物理场、多尺度生物流体力学建模与仿真
  • 批准号:
    RGPIN-2021-04088
  • 财政年份:
    2021
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Multiphysics Mechanics of Magnetic Shape Memory Polymers
职业:磁性形状记忆聚合物的多物理力学
  • 批准号:
    1943070
  • 财政年份:
    2020
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Standard Grant
Advanced Discretizations and Domain Decomposition Algorithms for Multiphysics Couplings of Fluid Flows and Solid Mechanics
用于流体流动和固体力学多物理场耦合的高级离散化和域分解算法
  • 批准号:
    1818775
  • 财政年份:
    2018
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Continuing Grant
Strategic Support Package: Engineering of Active Materials by Multiscale/Multiphysics Computational Mechanics
战略支持包:通过多尺度/多物理计算力学进行活性材料工程
  • 批准号:
    EP/R008531/1
  • 财政年份:
    2018
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Research Grant
SI2-SSI: Collaborative Research: Scalable Infrastructure for Enabling Multiscale and Multiphysics Applications in Fluid Dynamics, Solid Mechanics, and Fluid-Structure Interaction
SI2-SSI:协作研究:可扩展基础设施,支持流体动力学、固体力学和流固耦合中的多尺度和多物理场应用
  • 批准号:
    1836797
  • 财政年份:
    2017
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Standard Grant
SI2-SSI: Collaborative Research: Scalable Infrastructure for Enabling Multiscale and Multiphysics Applications in Fluid Dynamics, Solid Mechanics, and Fluid-Structure Interaction
SI2-SSI:协作研究:可扩展基础设施,支持流体动力学、固体力学和流固耦合中的多尺度和多物理场应用
  • 批准号:
    1607042
  • 财政年份:
    2015
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Standard Grant
SI2-SSI: Collaborative Research: Scalable Infrastructure for Enabling Multiscale and Multiphysics Applications in Fluid Dynamics, Solid Mechanics, and Fluid-Structure Interaction
SI2-SSI:协作研究:可扩展基础设施,支持流体动力学、固体力学和流固耦合中的多尺度和多物理场应用
  • 批准号:
    1450339
  • 财政年份:
    2015
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Standard Grant
SI2-SSI: Collaborative Research: Scalable Infrastructure for Enabling Multiscale and Multiphysics Applications in Fluid Dynamics, Solid Mechanics, and Fluid-Structure Interaction
SI2-SSI:协作研究:可扩展基础设施,支持流体动力学、固体力学和流固耦合中的多尺度和多物理场应用
  • 批准号:
    1450327
  • 财政年份:
    2015
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Standard Grant
SI2-SSI: Collaborative Research: Scalable Infrastructure for Enabling Multiscale and Multiphysics Applications in Fluid Dynamics, Solid Mechanics, and Fluid-Structure Interaction
SI2-SSI:协作研究:可扩展基础设施,支持流体动力学、固体力学和流固耦合中的多尺度和多物理场应用
  • 批准号:
    1450374
  • 财政年份:
    2015
  • 资助金额:
    $ 54.65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了