Advanced Discretizations and Domain Decomposition Algorithms for Multiphysics Couplings of Fluid Flows and Solid Mechanics

用于流体流动和固体力学多物理场耦合的高级离散化和域分解算法

基本信息

  • 批准号:
    1818775
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

A computational framework will be developed for modeling coupled physical processes. It will be applied to geoscience and biomedical problems of societal importance. The research will investigate coupled subsurface and surface flows to model interactions between contaminated aquifers, rivers, lakes, and wetlands. The project will model flows in fractured and deformable reservoirs to provide predictive simulations of hydraulic fracturing and carbon sequestration, including surface subsidence, wellbore collapse, and fault activation. The project will further model flow in arteries, accounting for flow within the arterial wall. This has an effect on the blood velocity in the lumen and the speed of the pressure wave, as well as low density lipoproteins (LDL) transport and drugs filtered into the tissue. The research will lead to the development of simulation tools that advance drug delivery as well prevention, detection, and therapy of cardiovascular diseases such as atherosclerosis. The objective of this project is mathematical and computational modeling of multiphysics systems of coupled flow and mechanics problems with multiscale input parameters. The simulation domain is decomposed into a union of subdomains, each one associated with a physical, mathematical, and numerical model. Physically meaningful interface conditions are imposed on the discrete level via mortar finite elements or penalty methods. The formulation provides great flexibility for multiphysics and multinumerics couplings. Furthermore, when combined with coarse scale mortar elements, it provides a multiscale approximation and an efficient way to solve the coarse grid problem in parallel. The project will develop 1) Mathematically rigorous and physically meaningful multiphysics models; 2) Robust, accurate and efficient multiscale discretization techniques; 3) Efficient parallel domain decomposition solvers and preconditioners; 4) Efficient non-iterative time-partitioned algorithms. Two main components of the proposed research are A) mixed elasticity formulations and discretizations, and their coupling with mixed flow discretizations in the multiphysics framework; B) space-time multidomain variational formulations and discretizations allowing for different time stepping in different subdomains. A computational framework will be developed and applied to geoscience and biomedical problems. The research will develop variational formulations of Partial differential Equations systems coupling free and porous media fluid flows with deformations of the porous solids. Free fluid models such as Stokes, Brinkman, or Navier-Stokes equations will be coupled through physically meaningful interface conditions with Darcy flow. Regions with Darcy flow through deformable porous media will be modeled by the Biot system of poroelasticity. Nonlinear models for non Newtonian fluids, as well as reduced-dimension fracture models will also be investigated. An emphasis will be placed on mixed elasticity formulations coupled with mixed Stokes and Darcy formulations. The PI will study well-posedness of the variational formulations and will develop stable and accurate discretizations. Novel cell-centered mixed finite element methods for elasticity and poroelasticity will be investigated. The essential-type interface conditions will be imposed on a coarse scale via mortar finite elements. The PI will carry out stability and a priori multiscale error analysis. the PI will develop efficient parallel non-overlapping domain decomposition algorithms for the solution of the resulting algebraic systems by reducing the global problem to a coarse scale interface problem. The PI will analyze the condition number of the interface operator and will develop efficient preconditioners for speeding up the interface iteration. The PI will also study penalty methods, such as the Nitsche's coupling method, to impose interface conditions, resulting in loosely coupled formulations amendable to efficient non-iterative time-partitioned algorithms. The PI will study the stability and accuracy of the methods, as well as their properties as preconditioners for monolithic schemes. The PI will further develop multidomain space-time variational formulations and discretizations for the multiphysics models, coupling spatial non-overlapping domain decomposition methods with Galerkin-type approximations in time, allowing for different time steps associated with different regions and different types of physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将开发一个计算框架来模拟耦合的物理过程。它将应用于具有社会重要性的地球科学和生物医学问题。这项研究将调查地下和地表的耦合流动,以模拟受污染的含水层、河流、湖泊和湿地之间的相互作用。该项目将对裂缝性和可变形油藏的流动进行建模,以提供水力压裂和碳封存的预测模拟,包括地表沉降、井筒坍塌和断层活化。该项目将进一步模拟动脉流动,计算动脉壁内的流动。这对腔内的血流速度和压力波的速度,以及低密度脂蛋白(LDL)的运输和过滤到组织中的药物都有影响。这项研究将导致模拟工具的发展,促进药物输送以及预防、检测和治疗心血管疾病,如动脉粥样硬化。本项目的目标是对多尺度输入参数的耦合流动和力学问题的多物理场系统进行数学和计算建模。仿真域被分解为子域的联合,每个子域都与一个物理、数学和数值模型相关联。物理上有意义的界面条件通过砂浆有限元或惩罚方法施加在离散水平上。该公式为多物理场和多数值耦合提供了很大的灵活性。此外,当与粗尺度砂浆单元结合时,该方法提供了一种多尺度逼近方法,并为并行求解粗网格问题提供了一种有效的方法。该项目将开发1)数学上严谨、物理上有意义的多物理场模型;2)稳健、准确、高效的多尺度离散化技术;3)高效的并行域分解求解器和预处理器;4)高效的非迭代分时算法。提出的研究的两个主要组成部分是A)混合弹性公式和离散化,以及它们与多物理场框架下的混合流离散化的耦合;B)时空多域变分公式和离散化,允许不同子域的不同时间步进。将开发一个计算框架并将其应用于地球科学和生物医学问题。本研究将发展耦合自由和多孔介质流体流动与多孔固体变形的偏微分方程组的变分公式。自由流体模型,如Stokes, Brinkman或Navier-Stokes方程将通过物理上有意义的界面条件与达西流动耦合。达西流通过可变形多孔介质的区域将采用Biot孔隙弹性系统进行建模。非牛顿流体的非线性模型以及降维裂缝模型也将被研究。重点将放在混合弹性公式与混合斯托克斯和达西公式相结合。PI将研究变分公式的适定性,并将开发稳定和准确的离散化。将研究弹性和孔隙弹性的新型以胞为中心的混合有限元方法。通过砂浆有限元在粗尺度上施加必要类型的界面条件。PI将进行稳定性和先验的多尺度误差分析。PI将开发有效的并行无重叠区域分解算法,通过将全局问题简化为粗尺度界面问题来求解所得到的代数系统。PI将分析接口运算符的条件数,并开发有效的预调节器以加快接口迭代。PI还将研究惩罚方法,例如Nitsche的耦合方法,以施加界面条件,从而产生可修改为有效的非迭代时分区算法的松耦合公式。PI将研究这些方法的稳定性和准确性,以及它们作为单片方案前置条件的性质。PI将进一步为多物理场模型开发多域时空变分公式和离散化,将空间非重叠域分解方法与时间上的伽辽金型近似相结合,允许与不同区域和不同类型物理相关联的不同时间步长。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Multipoint Stress Mixed Finite Element Method for Elasticity on Simplicial Grids
单纯网格弹性的多点应力混合有限元方法
  • DOI:
    10.1137/18m1229183
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Ambartsumyan, Ilona;Khattatov, Eldar;Nordbotten, Jan M.;Yotov, Ivan
  • 通讯作者:
    Yotov, Ivan
A multipoint stress mixed finite element method for elasticity on quadrilateral grids
四边形网格弹性的多点应力混合有限元法
Domain decomposition and multiscale mortar mixed finite element methods for linear elasticity with weak stress symmetry
弱应力对称性线弹性的域分解与多尺度砂浆混合有限元法
A nonlinear Stokes–Biot model for the interaction of a non-Newtonian fluid with poroelastic media
A three-field Banach spaces-based mixed formulation for the unsteady Brinkman–Forchheimer equations
  • DOI:
    10.1016/j.cma.2022.114895
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Sergio Caucao;Ricardo Oyarzúa;Segundo Villa-Fuentes;I. Yotov
  • 通讯作者:
    Sergio Caucao;Ricardo Oyarzúa;Segundo Villa-Fuentes;I. Yotov
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ivan Yotov其他文献

Mixed finite element projection methods for the unsteady Stokes equations
  • DOI:
    10.1016/j.cma.2024.117616
  • 发表时间:
    2025-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Costanza Aricò;Rainer Helmig;Ivan Yotov
  • 通讯作者:
    Ivan Yotov
A posteriori algebraic error estimates and nonoverlapping domain decomposition in mixed formulations: energy coarse grid balancing, local mass conservation on each step, and line search
混合格式中的后验代数误差估计与非重叠区域分解:能量粗网格平衡、每一步的局部质量守恒以及线搜索
Acknowledgement for Reviewers for 2022
  • DOI:
    10.1007/s10596-023-10193-7
  • 发表时间:
    2023-02-16
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Clint N. Dawson;Mary F. Wheeler;Ivan Yotov
  • 通讯作者:
    Ivan Yotov
Introduction Special Issue on Locally Conservative Numerical Methods for Flow in Porous Media
  • DOI:
    10.1023/a:1021267624044
  • 发表时间:
    2002-09-01
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Michael G. Edwards;Raytcho D. Lazarov;Ivan Yotov
  • 通讯作者:
    Ivan Yotov

Ivan Yotov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ivan Yotov', 18)}}的其他基金

Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
  • 批准号:
    2347546
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Mathematical and Computational Modeling of Interaction between Fluids and Poroelastic Structures
流体与多孔弹性结构之间相互作用的数学和计算模型
  • 批准号:
    2111129
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Multiscale domain decomposition methods for flow and mechanics problems
流动和力学问题的多尺度域分解方法
  • 批准号:
    1418947
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
A Stochastic Multiscale Computational Framework for Multiphysics Systems
多物理系统的随机多尺度计算框架
  • 批准号:
    1115856
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Multiscale numerical modeling of multiphysics systems
多物理系统的多尺度数值建模
  • 批准号:
    0813901
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Stochastic Multiscale Modeling of Subsurface Flow and Reactive Transport
CMG 合作研究:地下流和反应输运的随机多尺度建模
  • 批准号:
    0620402
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Numerical Modeling of Multiphysics Systems
多物理场系统的数值建模
  • 批准号:
    0411694
  • 财政年份:
    2004
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Multiblock numerical methods for multiphase flow and transport in porous media
多孔介质中多相流动和传输的多块数值方法
  • 批准号:
    0107389
  • 财政年份:
    2001
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
This PhD project is about the development of structure preserving (e.g. mass and total energy) finite element discretizations of flow models in Geophy
该博士项目是关于地球物理学中流动模型的结构保持(例如质量和总能量)有限元离散化的发展
  • 批准号:
    2753929
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Studentship
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    RGPIN-2015-05606
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2111387
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    RGPIN-2015-05606
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Tailored Entropy Stable Discretizations of Nonlinear Conservation Laws
职业:非线性守恒定律的定制熵稳定离散化
  • 批准号:
    1943186
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了