CAREER: Structural Discovery of Super-Complexes Regulating Energy Flow in Photosynthesis
职业:调节光合作用能量流的超级复合物的结构发现
基本信息
- 批准号:2145562
- 负责人:
- 金额:$ 87.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Oxygenic photosynthesis sustain life on earth by producing oxygen and providing energy for carbon fixation. Increased human population constantly challenges food and energy supplies thus requiring continued innovation to increase the productivity of photosynthesis in multiple ways. This research project will discover how plants direct light energy absorbed in leaves between two different energetic routes. The outcomes of these two routes, which are called linear and cyclic electron flow, produces different energy carries within plant cells. These energy carries are utilized differentially under different conditions and the balance between them is paramount for plant growth and adaptation. The project aims to discover new components and mechanisms that direct this decision using structural biology and protein engineering approaches. An additional goal of the project is to obtain molecular level images of these routing mechanisms in plants that utilize a special form of photosynthesis called C4 photosynthesis. C4 photosynthesis is employed by some of the most important crop species on the planet, Corn, Sugarcane and Sorghum, and confers to these plants many of the advantages that make them such successful crops, for example, improved water usage and higher photosynthetic efficiency. The project will use Sorghum, a plant better adapted to warm and dry conditions then Corn, as a platform to discover components and mechanisms that control electron flow and may be responsible for some of Sorghum’s unique properties. To improve accessibility to the project’s scientific results and to structural biology in general, scientifically accurate virtual reality scenes will be developed based on the project results. These will be used in basic biochemistry courses and made publicly available. A summer research internship will be offered to veterans to actively participate in this research project to enable exploration of research as career path. Our ability to control and manipulate photosynthesis is severely limited. The long-term goal of the project is to develop a high-level understanding of the function of photosynthetic supercomplexes together with the ability to manipulate their properties in photosynthetic organisms. To achieve this, the project will discover new structures of the photosystem I (PSI) complex in eukaryotes. PSI is one of the most complicated assemblies in nature. Like many large cellular structures, PSI interacts with cellular factors to carry distinct functions, a fact which is still not manifested in our structural description of PSI. Electron flow in photosynthesis follows two main modes, linear or cyclic electron flow (LEF or CEF respectively). By balancing these two pathways, photosynthetic organisms adapt the output of the photosynthetic machinery to cellular needs. The potential for engineering photosynthetic organisms to achieve higher productivity and to synthesize specific chemicals is great but requires changing the basic energy requirements from this machinery. This proposal tackles this issue using cryo-EM supplemented with functional analysis to discover supercomplexes adjusting energy flow around PSI. By determining high-resolution structures of these complexes our mechanistic understanding of the basic systems controlling electron flow modes in photosynthesis will greatly improve. This project is funded by the Molecular Biophysics Cluster in the Division of Molecular and Cellular Biosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
含氧光合作用通过产生氧气和为碳固定提供能量来维持地球上的生命。人口增长不断挑战粮食和能源供应,因此需要持续创新,以多种方式提高光合作用的生产力。该研究项目将发现植物如何在两种不同的能量途径之间引导叶片吸收的光能。这两种途径的结果,被称为线性和循环电子流,在植物细胞内产生不同的能量载体。这些能量载体在不同的条件下被不同地利用,它们之间的平衡对于植物的生长和适应至关重要。该项目旨在利用结构生物学和蛋白质工程方法发现指导这一决定的新组件和机制。该项目的另一个目标是获得植物中这些路由机制的分子水平图像,这些植物利用一种特殊形式的光合作用,称为C4光合作用。 C4光合作用被地球上一些最重要的作物物种,玉米,甘蔗和高粱所利用,并赋予这些植物许多使它们成为如此成功的作物的优势,例如,改善的水利用率和更高的光合效率。该项目将使用Sorcum,一种比玉米更适合温暖和干燥条件的植物,作为一个平台来发现控制电子流的组件和机制,并可能负责Sorcum的一些独特特性。为了提高对项目科学成果和结构生物学的可访问性,将根据项目成果开发科学准确的虚拟现实场景。这些将用于基础生物化学课程,并向公众提供。我们将为退伍军人提供暑期研究实习机会,让他们积极参与这项研究项目,以探索研究作为职业道路。我们控制和操纵光合作用的能力受到严重限制。该项目的长期目标是发展对光合超复合物功能的高水平理解,以及在光合生物中操纵其特性的能力。为了实现这一目标,该项目将发现真核生物中光系统I(PSI)复合体的新结构。PSI是自然界中最复杂的集合体之一。像许多大型细胞结构一样,PSI与细胞因子相互作用以携带不同的功能,这一事实在我们对PSI的结构描述中仍然没有表现出来。光合作用中的电子流有两种主要模式,线性或循环电子流(分别为LEF或CEF)。通过平衡这两种途径,光合生物使光合机制的输出适应细胞的需要。工程光合生物实现更高生产力和合成特定化学物质的潜力很大,但需要改变这种机器的基本能量需求。该提案使用cryo-EM辅以功能分析来解决这个问题,以发现超复合物调节PSI周围的能量流。通过确定这些复合物的高分辨率结构,我们对光合作用中控制电子流模式的基本系统的机械理解将大大提高。该项目由分子和细胞生物科学部的分子生物物理学小组资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuval Mazor其他文献
Identification of Red Pigments in the Photosystem I Complex of Oxygenic Photosynthesis
- DOI:
10.1016/j.bpj.2017.11.2851 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Yuval Mazor;Hila Toporik;Su Lin - 通讯作者:
Su Lin
Yuval Mazor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuval Mazor', 18)}}的其他基金
EAGER: Understanding the design principles of biological light harvesting
EAGER:了解生物光采集的设计原理
- 批准号:
2034021 - 财政年份:2020
- 资助金额:
$ 87.6万 - 项目类别:
Standard Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Discovery of a cryptic sphingolipid pathway in E.coli - structural and functional analysis.
大肠杆菌中神秘鞘脂途径的发现 - 结构和功能分析。
- 批准号:
BB/Y002210/1 - 财政年份:2024
- 资助金额:
$ 87.6万 - 项目类别:
Research Grant
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
$ 87.6万 - 项目类别:
Skeletal muscle protein structural dynamics and function drive applications to drug discovery
骨骼肌蛋白结构动力学和功能驱动药物发现的应用
- 批准号:
10650572 - 财政年份:2023
- 资助金额:
$ 87.6万 - 项目类别:
Discovery of Structural Weaknesses of Information Barriers and Exploration of Improvement Measures through Mathematical Modeling
通过数学建模发现信息壁垒的结构性弱点并探索改进措施
- 批准号:
23K01215 - 财政年份:2023
- 资助金额:
$ 87.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DMREF: Discovery, Development, Design and Additive Manufacturing of Multi-Principal-Element Hexagonal-Close-Packed Structural Alloys
DMREF:多主元六方密排结构合金的发现、开发、设计和增材制造
- 批准号:
2324022 - 财政年份:2023
- 资助金额:
$ 87.6万 - 项目类别:
Standard Grant
BRITE Pivot: Advancing Knowledge in Water-Shell Structure Interaction Through Discovery of Efficient Hydrodynamic and Structural Thin-shell Forms
BRITE Pivot:通过发现有效的流体动力学和结构薄壳形式来推进水壳结构相互作用的知识
- 批准号:
2227489 - 财政年份:2023
- 资助金额:
$ 87.6万 - 项目类别:
Standard Grant
Discovery of structural RNAs involved in human health and disease
发现与人类健康和疾病有关的结构RNA
- 批准号:
10704745 - 财政年份:2022
- 资助金额:
$ 87.6万 - 项目类别:
Cross-platform structural variant discovery with deep learning
通过深度学习跨平台结构变体发现
- 批准号:
10686879 - 财政年份:2022
- 资助金额:
$ 87.6万 - 项目类别:
Cross-platform structural variant discovery with deep learning
通过深度学习跨平台结构变体发现
- 批准号:
10453237 - 财政年份:2022
- 资助金额:
$ 87.6万 - 项目类别:
Shedding Light on Novel Antibiotic Discovery: Investigating the Relationship of Structural Dynamics and Catalytic Function in Lanthipeptide Synthetases, Enzymes Involved in Antibiotic Synthesis
揭示新抗生素的发现:研究羊毛脂肽合成酶、抗生素合成中涉及的酶的结构动力学和催化功能的关系
- 批准号:
566605-2021 - 财政年份:2022
- 资助金额:
$ 87.6万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years














{{item.name}}会员




