DMREF: Discovery, Development, Design and Additive Manufacturing of Multi-Principal-Element Hexagonal-Close-Packed Structural Alloys
DMREF:多主元六方密排结构合金的发现、开发、设计和增材制造
基本信息
- 批准号:2324022
- 负责人:
- 金额:$ 178.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Presently, the field of metallurgy is undergoing a renaissance spurred on by the realization that useful structural alloys can be formed by mixing many different types of atoms in roughly equal proportions. These materials are referred to as “multi-principal-element” alloys (MPEAs), and this approach has already given rise to the discovery of new strong and ductile alloys. However, these examples have been based on only a small subset of the atoms in the periodic table, and only a limited number of underlying crystal structures. The initial discoveries are encouraging, but the true potential of MPEAs is yet to be tapped. In this Designing Materials to Revolutionize and Engineer our Future (DMREF) project, advanced materials theory and high-throughput computation and experiments are combined with the tools of machine learning to accelerate the discovery and development of a relatively unexplored class of MPEAs in which the atoms of the alloy are arranged in a hexagonal pattern. This research area is ripe for transformative discoveries for targeted applications including the focus of this project: stronger and lighter alloys for low temperature structural applications inspired by the conditions encountered in space exploration. The project emphasizes alloys that can be fabricated through additive manufacturing, commonly referred to as metal 3D printing. Hence the alloys will be available for immediate technological applications because additive manufacturing offers great opportunities for rapid fabrication of components with complex geometries and tailored structures at the microscopic scale. These research goals will be achieved by harnessing the power of materials data while educating the next generation of materials researchers, and accordingly, the project is well aligned with the goals of the Materials Genome Initiative.In more detail, the project focuses on discovering and developing MPEAs crystallizing in the hexagonal-close-packed (HCP) structure. The initial focus is on alloys formed from the elements titanium, scandium, yttrium, zirconium, and hafnium. The composition space will be explored theoretically through computation of a set of identified descriptors including formation energies, lattice parameters, elastic constants, stacking fault and twin energies. The approach will leverage new classes of universal interatomic potentials for initial screening, with candidate systems investigated in more quantitative details using density functional theory based methods coupled with approaches designed to average over the wide variety of compositional arrangements encountered in MPEAs. Simultaneously, MPEAs will be synthesized using directed energy deposition laser systems and a concentration gradient approach that allows synthesis of a broad composition range within one sample. Ductility will be characterized using rapid nanoindentation screening and cryogenic micro-tensile testing. The resulting data will be used to develop and improve machine learning models that will, in turn, lead to suggestions for new materials. These materials will then be synthesized, and the process repeated. This iterative process will, ultimately, establish correlations between computable data and observable mechanical properties that enable the discovery and development of additively manufactured HCP MPEAs for low temperature applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前,冶金学领域正在经历一场复兴,这是由于人们认识到,有用的结构合金可以通过将许多不同类型的原子以大致相等的比例混合而形成。这些材料被称为“多主元素”合金(MPEAs),这种方法已经引起了新的强韧性合金的发现。 然而,这些例子仅基于元素周期表中的一小部分原子,并且仅基于有限数量的基础晶体结构。 最初的发现是令人鼓舞的,但MPEAs的真正潜力还有待挖掘。在这个设计材料以革命和工程我们的未来(DMREF)项目中,先进的材料理论和高通量计算和实验与机器学习工具相结合,以加速发现和开发一类相对未开发的MPEAs,其中合金原子以六边形模式排列。这一研究领域已经成熟,可以为目标应用提供变革性的发现,包括该项目的重点:受太空探索中遇到的条件启发,为低温结构应用提供更强、更轻的合金。该项目强调可以通过增材制造(通常称为金属3D打印)制造的合金。因此,这些合金将可用于直接的技术应用,因为增材制造为快速制造具有复杂几何形状和微观尺度定制结构的组件提供了巨大的机会。这些研究目标将通过利用材料数据的力量来实现,同时教育下一代材料研究人员,因此,该项目与材料基因组计划的目标非常一致。更详细地说,该项目的重点是发现和开发以六方密堆积(HCP)结构结晶的MPEAs。 最初的重点是由元素钛,钪,钇,锆和铪形成的合金。 通过计算一组确定的描述符,包括形成能,晶格参数,弹性常数,堆垛层错和孪生能量的组合物空间将进行理论探索。 该方法将利用新类别的通用原子间相互作用势进行初步筛选,使用基于密度泛函理论的方法结合旨在平均MPEAs中遇到的各种组成安排的方法,对候选系统进行更定量的详细研究。同时,将使用定向能量沉积激光系统和浓度梯度方法合成MPEAs,该方法允许在一个样品内合成宽的组成范围。延展性将使用快速纳米压痕筛选和低温微拉伸测试来表征。由此产生的数据将用于开发和改进机器学习模型,从而为新材料提供建议。然后将这些材料合成,并重复该过程。这一迭代过程将最终建立可计算数据和可观察机械性能之间的相关性,从而能够发现和开发用于低温应用的增材制造HCP MPEAs。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daryl Chrzan其他文献
MP34-06 INHIBITION OF NUCLEATION AND GROWTH OF CYSTINE CRYSTALS IN URINE
- DOI:
10.1016/j.juro.2015.02.1302 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:
- 作者:
Daryl Chrzan;Krishna Ramaswamy;David Killilea;Tiffany Zee;Thomas Chi;Pankaj Kapahi;Arnold Kahn;Marshall Stoller - 通讯作者:
Marshall Stoller
Enhancing intrinsic ductility in VNbMoTaW high entropy alloy: A combinatorial investigation with experimental evaluation of theoretical predictions
提高 VNbMoTaW 高熵合金的固有延展性:结合理论预测的实验评估研究
- DOI:
10.1016/j.jmrt.2025.02.011 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:6.600
- 作者:
Taohid Bin Nur Tuhser;Ian Stewart Winter;Daryl Chrzan;T. John Balk - 通讯作者:
T. John Balk
Daryl Chrzan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daryl Chrzan', 18)}}的其他基金
SNM: Scalable Nanomanufacturing of 2D Electronic Materials and Devices Using Automated Exfoliation
SNM:使用自动剥离的二维电子材料和设备的可扩展纳米制造
- 批准号:
1636256 - 财政年份:2016
- 资助金额:
$ 178.19万 - 项目类别:
Standard Grant
Experimental and Theoretical Investigations of Gum Metal
胶质金属的实验和理论研究
- 批准号:
1105081 - 财政年份:2011
- 资助金额:
$ 178.19万 - 项目类别:
Continuing Grant
Theoretical and Experimental Investigations of Gum Metal
胶质金属的理论与实验研究
- 批准号:
0706554 - 财政年份:2007
- 资助金额:
$ 178.19万 - 项目类别:
Continuing Grant
Dislocations, Plasticity, and Strain Hardening in Carbon Nanotubes
碳纳米管中的位错、塑性和应变硬化
- 批准号:
0528511 - 财政年份:2005
- 资助金额:
$ 178.19万 - 项目类别:
Standard Grant
CAREER: Linking the Atomic and Meso-Scales to Mechanical Properties: A Case Study of Ni3Al
职业:将原子和介观尺度与机械性能联系起来:Ni3Al 的案例研究
- 批准号:
9703427 - 财政年份:1997
- 资助金额:
$ 178.19万 - 项目类别:
Continuing Grant
相似海外基金
FMO/ML-Guided Drug Design: Accelerating Novel Inhibitor Development and Drug Discovery
FMO/ML 引导的药物设计:加速新型抑制剂的开发和药物发现
- 批准号:
24K20888 - 财政年份:2024
- 资助金额:
$ 178.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 178.19万 - 项目类别:
ARC Future Fellowships
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
- 批准号:
2311632 - 财政年份:2023
- 资助金额:
$ 178.19万 - 项目类别:
Standard Grant
Development of bile cell block specimens for enabling comprehensive genome profiling and therapeutic medicine discovery of bile tract cancer
开发胆细胞块样本,以实现胆道癌的全面基因组分析和治疗药物发现
- 批准号:
23K14646 - 财政年份:2023
- 资助金额:
$ 178.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of phage technology to precise control of intestinal microbiota disturbance for novel drug discovery
开发噬菌体技术精确控制肠道微生物群紊乱以促进新药研发
- 批准号:
23K18394 - 财政年份:2023
- 资助金额:
$ 178.19万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of drug discovery platform for neurodegenerative diseases using new 3D culture method
利用新的3D培养方法开发神经退行性疾病药物发现平台
- 批准号:
22KJ2712 - 财政年份:2023
- 资助金额:
$ 178.19万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Comprehensive development strategy of modality-specific "intellectual property" and "cultivation" with an eye on "pharmaceutical affairs" in academia drug discovery
学术界新药研发着眼“药事”的模式“知识产权”与“培育”综合发展策略
- 批准号:
23K02551 - 财政年份:2023
- 资助金额:
$ 178.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovery and Development of a Benzoquinone Molecule as a Novel Anesthetic
苯醌分子作为新型麻醉剂的发现和开发
- 批准号:
10732956 - 财政年份:2023
- 资助金额:
$ 178.19万 - 项目类别:
Development of an automatised platform for drug discovery in relevant human tissue models
开发相关人体组织模型中药物发现的自动化平台
- 批准号:
2872627 - 财政年份:2023
- 资助金额:
$ 178.19万 - 项目类别:
Studentship
Development of a Chemoproteomics Centre of Excellence: A Prosperity Partnership for Drug Discovery in Northern Ireland
化学蛋白质组学卓越中心的发展:北爱尔兰药物发现的繁荣伙伴关系
- 批准号:
BB/Y00325X/1 - 财政年份:2023
- 资助金额:
$ 178.19万 - 项目类别:
Research Grant














{{item.name}}会员




