CAREER: Non-Hermitian physics of spacetime-periodic soft matter
职业:时空周期软物质的非厄米物理学
基本信息
- 批准号:2145766
- 负责人:
- 金额:$ 59.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis CAREER award supports theoretical and computational research, and educational activities that advance designer materials that mimic the adaptability of living systems and their ability to manipulate energy flows. The properties of a material arise from the collective interactions of its building blocks. In traditional materials, the building blocks are atoms or molecules whose interactions are determined by the nature of the chemical bonds among them. Modern technical advances in fabricating complex assemblies, such as 3D printing and bio-inspired self-assembly, have enabled artificial materials composed of active building blocks such as driven micromechanical resonators, miniature robots, and even bacteria whose interactions can be dynamically modulated via external means or internal power sources. By incorporating dynamic elements, these new materials can manipulate mechanical energy and transform their structural properties in ways that are unattainable in inert materials. This project will develop quantitative models that predict the collective behavior of massive assemblies of dynamic building blocks, thereby expanding capabilities to tailor the response of dynamic materials towards specific technological needs.The PI and his research team will develop new theoretical and computational models to predict the mechanical and structural response of assemblies of building blocks whose interactions are modulated to form periodic patterns in both space and time. These models will extend physical theories which model inert materials as networks of masses connected by springs, with the novel advance that the spring stiffnesses will be varied sinusoidally by external driving agents. The new models will be used to propose designs for dynamic materials with desirable material properties targeted towards technological applications such as vibration control, shock absorption, and acoustic signal processing. For example, time-varying spring stiffnesses can enable structures that amplify sound waves traveling through the material in particular directions or transform a static solid to a spontaneously flowing liquid when a prescribed pressure is applied. In addition, this research activity will advance fundamental understanding of systems which manipulate energy flows in fields as diverse as electronics, photonics, and quantum information.The educational component of the project will develop new pedagogical tools, activities, and programs to advance materials science knowledge among students in non-traditional academic pathways, K-12 students, beginning graduate students, and the general public. The PI and his research team will develop new hands-on activities to convey the physical principles underlying the project to participants at the Eugene Youth Math Festival, the Oregon Country Fair, and summer programs for high school students hosted by the University of Oregon. This award will support research internships for community college students who are considering a transfer to a four-year degree program, and the development of new learning modules which use scientific teaching practices to improve equity and inclusion in graduate physics courses. The educational activities are designed to enhance participation, achievement, and persistence of students from underrepresented groups in STEM while improving outcomes for students from all backgrounds.TECHNICAL SUMMARYThis CAREER award will support research and educational activities to advance fundamental understanding and public awareness of dynamic materials that are designed to channel mechanical energy in ways unattainable by inert structures. Technological breakthroughs have enabled the fabrication of collections of interacting building blocks whose local properties can be modulated by external fields or internally powered mechanisms as desired. This opens new possibilities for non-equilibrium manipulation of mechanical energy. However, the normal modes of these dynamic materials are typically investigated using approximate methods such as plane-wave and Magnus expansions that fail to correctly capture symmetry constraints and topological features of the excitation spectra. This project will develop an exact theoretical framework to compute the band structures of spacetime-modulated mechanical systems with generalized couplings. The framework will be used for rigorous evaluations and new explorations of non-equilibrium mechanics and phase behavior, including topological properties of excitation spectra and phase changes between crystal-like ordered states in active matter. Beyond this work, the framework will be widely applicable to harmonic oscillations of dynamical systems with second-order time dynamics. By revealing new ways to control the flow of mechanical energy in classical systems, the research will advance fundamental understanding of non-Hermitian physics with relevance to manipulating energy flows in quantum condensed matter, cold atoms, and optics.The underlying concepts and research questions will be integrated into educational activities and programs that will improve awareness of fundamental materials science and its role in technological advancement in K-12 students, undergraduate and graduate physics students, and the general public. New opportunities for materials science research will be created for community college students, thereby reinforcing pathways to STEM careers for students with non-traditional backgrounds. The research and educational plans leverage the PI's expertise in theoretical modeling of soft matter systems and existing relationships with educational and outreach organizations in and around Eugene, Oregon.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结这个职业奖项支持理论和计算研究,以及促进模仿生命系统适应性和操纵能量流动能力的设计师材料的教育活动。一种材料的性质是由其构件的集体相互作用产生的。在传统材料中,构建块是原子或分子,其相互作用由它们之间的化学键的性质决定。在制造复杂组件方面的现代技术进步,如3D打印和生物启发的自组装,使人工材料成为可能,这些人工材料由主动构建块组成,如驱动微机械谐振器、微型机器人,甚至细菌,其相互作用可以通过外部手段或内部电源动态调节。通过加入动态元素,这些新材料可以操纵机械能,并以惰性材料无法实现的方式改变其结构特性。这个项目将开发预测动态积木大规模组装的集体行为的定量模型,从而扩展定制动态材料对特定技术需求的响应的能力。PI和他的研究团队将开发新的理论和计算模型,以预测其相互作用被调制为在空间和时间上形成周期性模式的积木组装的机械和结构响应。这些模型将扩展将惰性材料建模为由弹簧连接的质量网络的物理理论,具有新的进展,即弹簧的刚度将被外部驱动剂正弦变化。新的模型将被用于提出具有理想材料性能的动态材料的设计,目标是用于振动控制、减震和声信号处理等技术应用。例如,时变的弹簧刚度可以使结构放大在特定方向上通过材料的声波,或者在施加规定的压力时将静态固体转换为自发流动的液体。此外,这项研究活动将促进对在电子、光子学和量子信息等不同领域中操纵能量流动的系统的基本了解。该项目的教育部分将开发新的教学工具、活动和计划,以在非传统学术途径的学生、K-12学生、初级研究生和普通公众中促进材料科学知识。PI和他的研究团队将开发新的动手活动,向尤金青年数学节、俄勒冈乡村集市和俄勒冈大学主办的高中生暑期项目的参与者传达项目背后的物理原理。该奖项将支持正在考虑转到四年制学位课程的社区大学学生的研究实习,并支持开发新的学习模块,这些模块使用科学的教学实践来改善物理研究生课程的公平性和包容性。教育活动旨在提高STEM中代表性不足群体的学生的参与度、成就和坚持性,同时改善来自所有背景的学生的结果。技术总结该职业奖将支持研究和教育活动,以促进对动态材料的基本理解和公众意识,这些材料旨在以惰性结构无法实现的方式传递机械能。技术突破使相互作用的积木的集合得以制造,其局部特性可以根据需要通过外部磁场或内部动力机制进行调节。这为机械能的非平衡操纵打开了新的可能性。然而,这些动力学材料的简正模通常是用平面波和Magnus展开等近似方法来研究的,这些方法不能正确地捕捉到激发谱的对称性约束和拓扑特征。这个项目将建立一个精确的理论框架来计算具有广义耦合的时空调制机械系统的能带结构。该框架将用于对非平衡力学和相行为的严格评估和新的探索,包括激发光谱的拓扑性质和活性物质中类晶体有序状态之间的相变。除此之外,该框架还将广泛应用于二阶时间动力学系统的简谐振荡问题。通过揭示控制经典系统中机械能流动的新方法,这项研究将促进对与操纵量子凝聚态物质、冷原子和光学中的能量流动相关的非厄米物理学的基本理解。潜在的概念和研究问题将被整合到教育活动和计划中,以提高K-12学生、本科生和研究生以及普通公众对基础材料科学及其在技术进步中的作用的认识。将为社区大学的学生创造新的材料科学研究机会,从而加强非传统背景的学生进入STEM职业生涯的途径。研究和教育计划利用了PI在软物质系统理论建模方面的专业知识,以及与俄勒冈州尤金及其周围的教育和外展组织的现有关系。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Degeneracies and symmetry breaking in pseudo-Hermitian matrices
- DOI:10.1103/physrevresearch.5.023035
- 发表时间:2022-09
- 期刊:
- 影响因子:4.2
- 作者:Abhijeet Melkani
- 通讯作者:Abhijeet Melkani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jayson Paulose其他文献
Jayson Paulose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jayson Paulose', 18)}}的其他基金
Metamaterial Design Platform and Dynamic Building Blocks for Non-Equilibrium, Symmetry-Violating Manipulation of Mechanical Waves
用于非平衡、对称破坏机械波操纵的超材料设计平台和动态构建模块
- 批准号:
2128671 - 财政年份:2021
- 资助金额:
$ 59.34万 - 项目类别:
Standard Grant
相似国自然基金
Non-CG DNA甲基化平衡大豆产量和SMV抗性的分子机制
- 批准号:32301796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
- 批准号:LQ23H150003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
染色体不稳定性调控肺癌non-shedding状态及其生物学意义探索研究
- 批准号:82303936
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
变分法在双临界Hénon方程和障碍系统中的应用
- 批准号:12301258
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
BTK抑制剂下调IL-17分泌增强CD20mb对Non-GCB型弥漫大B细胞淋巴瘤敏感性
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Non-TAL效应子NUDX4通过Nudix水解酶活性调控水稻白叶枯病菌致病性的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一种新non-Gal抗原CYP3A29的鉴定及其在猪-猕猴异种肾移植体液排斥反应中的作用
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
非经典BAF(non-canonical BAF,ncBAF)复合物在小鼠胚胎干细胞中功能及其分子机理的研究
- 批准号:32170797
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
Non-Oberbeck-Boussinesq效应下两相自然对流问题的建模及高效算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
植物胚乳发育过程中non-CG甲基化调控的分子机制探究
- 批准号:LQ21C060001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
$ 59.34万 - 项目类别:
Standard Grant
Non-Hermitian Physics in Ultracold Atoms and Photonics
超冷原子和光子学中的非厄米物理
- 批准号:
2409943 - 财政年份:2024
- 资助金额:
$ 59.34万 - 项目类别:
Continuing Grant
Topological insulators and free fermions: from Hermitian to non-Hermitian
拓扑绝缘体和自由费米子:从厄米特到非厄米特
- 批准号:
DP240100838 - 财政年份:2024
- 资助金额:
$ 59.34万 - 项目类别:
Discovery Projects
Exploration of novel non-Hermitian phenomena induced by active matter
探索活性物质引起的新颖非厄米现象
- 批准号:
23K13027 - 财政年份:2023
- 资助金额:
$ 59.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
BRITE Pivot: Emergent Mechanics and Non-Hermitian Dynamics of Odd Elastic Solids
BRITE Pivot:奇数弹性固体的涌现力学和非厄米动力学
- 批准号:
2227474 - 财政年份:2023
- 资助金额:
$ 59.34万 - 项目类别:
Standard Grant
Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media
合作研究:非厄米光子介质中新型共振的第一性原理控制
- 批准号:
2326699 - 财政年份:2023
- 资助金额:
$ 59.34万 - 项目类别:
Standard Grant
Controlling light with non-Hermitian Schrödinger dynamics
用非厄米薛定谔动力学控制光
- 批准号:
EP/X032256/1 - 财政年份:2023
- 资助金额:
$ 59.34万 - 项目类别:
Research Grant
Non-Hermitian physics of heavy-fermion superconductors at exceptional points
重费米子超导体在特殊点的非厄米物理
- 批准号:
22KJ0752 - 财政年份:2023
- 资助金额:
$ 59.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media
合作研究:非厄米光子介质中新型共振的第一性原理控制
- 批准号:
2326698 - 财政年份:2023
- 资助金额:
$ 59.34万 - 项目类别:
Standard Grant