CAREER: Optimal Transport-based Density-Aware Multi-Agent Exploration
职业:基于最佳传输的密度感知多智能体探索
基本信息
- 批准号:2145810
- 负责人:
- 金额:$ 54.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Multi-robotic systems can provide many benefits over single robots in exploring and servicing large-scale environments, such as in problems of search and rescue, surveillance and reconnaissance, smart farming, infrastructure inspection, wildlife monitoring, weather monitoring, and planetary exploration. However, the deployment of multiple robots in an efficient manner remains a challenge. Traditional approaches for deploying robots that uniformly or randomly cover a given domain are not necessarily efficient. This Faculty Early Career Development Program (CAREER) award will support fundamental research to develop a new method for multi-agent control by incorporating density information that reflects the priority or importance of covering specific areas in the domain. This paradigm shift from traditional to adaptive coverage creates an opportunity to maximize the efficiency of multi-agent explorations in various missions where both time and resources are limited. The outcomes of this project will include hands-on demonstrations of multi-agent control for wildlife monitoring. The integrated research and educational activities will directly impact upcoming generations of scientists and engineers through involving graduate and undergraduate students in research and organizing education and outreach programs for K-12 students with an emphasis on underrepresented minority groups.This project focuses on improving the efficiency of multi-agent explorations by employing optimal transport (OT) theory as a tool to synthesize multi-agent trajectories. OT provides a way to quantify the distance between two probability density functions (PDFs): the reference PDF that is chosen to indicate the relative importance or priority of the given domain and the current PDF that will be formed based on the time-averaged behavior of the multi-agent system. A decentralized optimal control law for multi-agent systems will be developed to manipulate and reshape the PDF of the multi-agent trajectories to make it as close to the reference PDF as possible. This new framework, based on concepts from OT theory, will serve to advance knowledge of multi-agent control for broad environment exploration.This project is jointly funded by the CMMI-DCSD program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多机器人系统可以在探索和服务大规模环境方面提供许多优势,例如搜索和救援,监视和侦察,智能农业,基础设施检查,野生动物监测,天气监测和行星探索。然而,以有效的方式部署多个机器人仍然是一个挑战。传统的方法部署机器人,均匀或随机覆盖一个给定的域不一定是有效的。该学院早期职业发展计划(CAREER)奖将支持基础研究,通过结合反映该领域特定领域的优先级或重要性的密度信息,开发多智能体控制的新方法。这种从传统到适应性覆盖的范式转变为在时间和资源有限的各种任务中最大限度地提高多智能体探索的效率创造了机会。该项目的成果将包括野生动物监测多代理控制的实践演示。综合研究和教育活动将直接影响未来几代的科学家和工程师,通过参与研究生和本科生的研究和组织教育和推广计划,为K-12学生,重点是代表性不足的少数群体。该项目的重点是提高效率的多智能体探索采用最优运输(OT)理论作为工具,以合成多智能体轨迹。OT提供了一种方法来量化两个概率密度函数(PDF)之间的距离:选择参考PDF以指示给定域的相对重要性或优先级,以及将基于多智能体系统的时间平均行为形成的当前PDF。一个分散的多智能体系统的最优控制律将被开发来操纵和重塑多智能体轨迹的PDF,使其尽可能接近参考PDF。这个新的框架,从OT理论的概念为基础,将有助于推进知识的多智能体控制广泛的环境exploration.This项目是共同资助的CMMI-DCSD计划和既定计划,以刺激竞争力的研究(EPSCoR)。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kooktae Lee其他文献
Effect of Asynchronous Communications on Stationary Solutions for Discrete-Time Multiagent Systems
- DOI:
10.1109/tsmc.2019.2926696 - 发表时间:
2021-06 - 期刊:
- 影响因子:0
- 作者:
Kooktae Lee - 通讯作者:
Kooktae Lee
Performance Enhancement and Load Balancing of Swarming Drones through Position Reconfiguration
通过位置重新配置来增强集群无人机的性能和负载平衡
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
A. Mirzaeinia;M. Hassanalian;Kooktae Lee;Mehdi Mirzaeinia - 通讯作者:
Mehdi Mirzaeinia
Optimal Gas Leak Localization and Detection using an Autonomous Mobile Robot
使用自主移动机器人进行最佳气体泄漏定位和检测
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Geronimo Macias;Kooktae Lee - 通讯作者:
Kooktae Lee
Wildlife Monitoring Using a Multi-UAV System with Optimal Transport Theory
使用多无人机系统和最佳运输理论进行野生动物监测
- DOI:
10.20944/preprints202103.0525.v1 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
R. Kabir;Kooktae Lee - 通讯作者:
Kooktae Lee
On the Uniqueness of Stationary Solutions of an Asynchronous Parallel and Distributed Algorithm for Diffusion Equations
扩散方程异步并行分布式算法平稳解的唯一性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Kooktae Lee;R. Bhattacharya - 通讯作者:
R. Bhattacharya
Kooktae Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
- 批准号:
2401019 - 财政年份:2024
- 资助金额:
$ 54.23万 - 项目类别:
Standard Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 54.23万 - 项目类别:
Continuing Grant
Variational Optimal Transport Methods for Nonlinear Filtering
非线性滤波的变分最优传输方法
- 批准号:
2318977 - 财政年份:2023
- 资助金额:
$ 54.23万 - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246606 - 财政年份:2023
- 资助金额:
$ 54.23万 - 项目类别:
Standard Grant
Statistical Inference for Optimal Transport
最佳运输的统计推断
- 批准号:
2310632 - 财政年份:2023
- 资助金额:
$ 54.23万 - 项目类别:
Standard Grant
Online Inverse Optimal Transport for Societal Flows
社会流量的在线逆最优运输
- 批准号:
EP/X010503/1 - 财政年份:2023
- 资助金额:
$ 54.23万 - 项目类别:
Research Grant
Optimal Transport Protocols for Biomolecular Machinery - Approaching the Principle Limits of Control of Microscopic Systems
生物分子机械的最佳传输协议 - 接近微观系统控制的原理极限
- 批准号:
23H01136 - 财政年份:2023
- 资助金额:
$ 54.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Computational Methods for Optimal Transport via Fluid Flows
合作研究:流体流动优化传输的计算方法
- 批准号:
2313454 - 财政年份:2023
- 资助金额:
$ 54.23万 - 项目类别:
Continuing Grant
Optimal Transport of Stochastic Processes in Mathematical Finance
数学金融中随机过程的最优传输
- 批准号:
2345556 - 财政年份:2023
- 资助金额:
$ 54.23万 - 项目类别:
Continuing Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246611 - 财政年份:2023
- 资助金额:
$ 54.23万 - 项目类别:
Standard Grant