CAREER: Optimal Transport and Dynamics in Machine Learning
职业:机器学习中的最优传输和动力学
基本信息
- 批准号:2145900
- 负责人:
- 金额:$ 44.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The goal of machine learning is to develop algorithms that find meaningful patterns in data. Initially, such algorithms led to breakthroughs in our digital lives, from automated language translation to improved online search. Increasingly, they impact every aspect of life, from medical image analysis to fraud detection. Machine learning has also risen to paramount importance in the sciences, as researchers use the same algorithms to analyze datasets, test hypotheses, and make predictions, accelerating the pace of scientific discovery. However, despite its success, many foundational questions of machine learning remain poorly understood: What is behind the surprising success of neural networks and when might they fail? How can algorithms be tailored to individual scientific experiments, to leverage centuries of domain specific knowledge as they extend the reach of an analysis? To answer these questions, the investigator will study the mathematical foundations of machine learning, using tools from optimal transport and partial differential equations. This research will be integrated with educational opportunities for both undergraduate and graduate students. The investigator will hold undergraduate research symposia to improve awareness of campus research opportunities, with the goal of increasing the number of diverse students conducting research projects in applied mathematics. The investigator will also develop a new graduate course on optimal transport and machine learning, the lectures from which will be made publicly available, and organize an early-career researcher workshop geared to graduate students in the western United States, which will provide students in applied mathematics with an opportunity to learn from a diverse cadre of well-established researchers, as well as to present their own work.At the heart of this research program are three main projects. In the first project, the investigator will study the role of nonlocal interactions in the training dynamics of two-layer neural networks, analyzing how the interplay between model selection, data distribution, and regularity affects robustness and rate of convergence to optimum. In the second project, the investigator will develop particle methods for sampling and control theory based on nonlinear diffusions. In the third project, the investigator will use new optimal transport metrics to develop interpretable machine learning methods for analyzing data from multiple components of a scientific experiment. These methods will then be applied to machine learning tasks in particle physics, including classification of events at the Large Hadron Collider.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。机器学习的目标是开发在数据中发现有意义模式的算法。最初,这些算法为我们的数字生活带来了突破,从自动语言翻译到改进的在线搜索。它们越来越多地影响着生活的各个方面,从医学图像分析到欺诈检测。机器学习在科学中也变得至关重要,因为研究人员使用相同的算法来分析数据集,测试假设并进行预测,加快了科学发现的步伐。然而,尽管机器学习取得了成功,但它的许多基本问题仍然知之甚少:神经网络惊人的成功背后是什么?它们什么时候会失败?算法如何根据个人的科学实验进行定制,以利用几个世纪以来的特定领域知识来扩展分析范围?为了回答这些问题,研究人员将研究机器学习的数学基础,使用最佳运输和偏微分方程的工具。这项研究将与本科生和研究生的教育机会相结合。调查员将举行本科研究座谈会,以提高校园研究机会的认识,目的是增加在应用数学进行研究项目的不同学生的数量。研究人员还将开发一门关于最佳运输和机器学习的新研究生课程,其中的讲座将公开提供,并组织一个面向美国西部研究生的早期职业研究人员研讨会,这将为应用数学学生提供一个向各种知名研究人员学习的机会,以及展示他们自己的工作。在这个研究计划的核心是三个主要项目。在第一个项目中,研究人员将研究非局部相互作用在两层神经网络训练动态中的作用,分析模型选择,数据分布和规律性之间的相互作用如何影响鲁棒性和收敛到最优的速度。在第二个项目中,研究者将开发基于非线性扩散的采样和控制理论的粒子方法。在第三个项目中,研究人员将使用新的最佳运输指标来开发可解释的机器学习方法,以分析来自科学实验多个组成部分的数据。这些方法将应用于粒子物理学中的机器学习任务,包括大型强子对撞机的事件分类。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katy Craig其他文献
Convergence of Regularized Nonlocal Interaction Energies
正则化非局域相互作用能量的收敛
- DOI:
10.1137/15m1013882 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Katy Craig;I. Topaloglu - 通讯作者:
I. Topaloglu
Nonconvex gradient flow in the Wasserstein metric and applications to constrained nonlocal interactions
Wasserstein 度量中的非凸梯度流及其在约束非局部交互中的应用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Katy Craig - 通讯作者:
Katy Craig
Clustering dynamics on graphs: from spectral clustering to mean shift through Fokker-Planck interpolation
图上的聚类动态:从谱聚类到通过 Fokker-Planck 插值的均值平移
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Katy Craig;N. G. Trillos;D. Slepčev - 通讯作者:
D. Slepčev
Nonlocal approximation of slow and fast diffusion
慢扩散和快扩散的非局部近似
- DOI:
10.1016/j.jde.2025.01.035 - 发表时间:
2025-05-05 - 期刊:
- 影响因子:2.300
- 作者:
Katy Craig;Matt Jacobs;Olga Turanova - 通讯作者:
Olga Turanova
THE EXPONENTIAL FORMULA FOR THE WASSERSTEIN METRIC
瓦瑟斯坦度量的指数公式
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Katy Craig - 通讯作者:
Katy Craig
Katy Craig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katy Craig', 18)}}的其他基金
Singular Limits and Gradient Flows: Analysis and Numerics
奇异极限和梯度流:分析和数值
- 批准号:
1811012 - 财政年份:2018
- 资助金额:
$ 44.82万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
- 批准号:
2401019 - 财政年份:2024
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 44.82万 - 项目类别:
Continuing Grant
Variational Optimal Transport Methods for Nonlinear Filtering
非线性滤波的变分最优传输方法
- 批准号:
2318977 - 财政年份:2023
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246606 - 财政年份:2023
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant
Online Inverse Optimal Transport for Societal Flows
社会流量的在线逆最优运输
- 批准号:
EP/X010503/1 - 财政年份:2023
- 资助金额:
$ 44.82万 - 项目类别:
Research Grant
Statistical Inference for Optimal Transport
最佳运输的统计推断
- 批准号:
2310632 - 财政年份:2023
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant
Optimal Transport Protocols for Biomolecular Machinery - Approaching the Principle Limits of Control of Microscopic Systems
生物分子机械的最佳传输协议 - 接近微观系统控制的原理极限
- 批准号:
23H01136 - 财政年份:2023
- 资助金额:
$ 44.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Computational Methods for Optimal Transport via Fluid Flows
合作研究:流体流动优化传输的计算方法
- 批准号:
2313454 - 财政年份:2023
- 资助金额:
$ 44.82万 - 项目类别:
Continuing Grant
Optimal Transport of Stochastic Processes in Mathematical Finance
数学金融中随机过程的最优传输
- 批准号:
2345556 - 财政年份:2023
- 资助金额:
$ 44.82万 - 项目类别:
Continuing Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246611 - 财政年份:2023
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant