CAREER: Bilevel Optimization for Accountable Machine Learning on Graphs

职业:图上负责任的机器学习的双层优化

基本信息

  • 批准号:
    2145922
  • 负责人:
  • 金额:
    $ 55.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Graphs represent real-world entities and their connections, found in diverse disciplines, such as computer science, civil engineering, and bioinformatics. Machine learning is a useful technique that can make decisions on large-scale graph datasets to help prevent cyberattacks, reduce energy waste, invent new cures for diseases. Unfortunately, complicated graph structures reduce the accountability of machine decisions, which can be 1) hard for human users to comprehend, and 2) discriminative against certain subpopulations or individuals. The project will incorporate prior human knowledge about graphs as transparency and fairness constraints over machine decisions. With diverse desiderata, the project will comprehensively discover useful trade-offs of multiple competitive transparency and fairness objectives to help humans make sense of and adopt machine decisions. Due to graph variations, volatility in machine decisions can jeopardize their accountability, and the project will discover the conditions of variations under which robust transparency and fairness can and should be expected. Governments, regulators, and organizations can rely on the invented techniques to audit civil infrastructure operations, online social networks, and commerce. Scientists working on materials, drugs, and human brain networks will benefit from the accountability through the constraints designed by them. Via publications, tutorials, courses, and workshops, the project will train undergraduates and graduates, many of whom are underrepresented. K6-12 students will be educated about machine learning on graphs, using an interactive role-playing computer game, and lectures designed for the lay users, through outreach activities.To meet these goals, this project identifies new challenges in accountable ML and addresses them under the BLO (bilevel optimization) framework. Unlike accountability without domain-specific constraints, the project will design human-in-the-loop constraint generation methods to help specify relevant constraints for graph data. Constraints can be numerous and uncertain, and accordingly, the project invents differentiation-through-optimization, hierarchical proximal methods, and chance-constrained optimization. Unlike scalar optimization of accountable ML, the project aims at efficient multi-objective trade-offs and proposes constrained vector optimization and continuous exploration of local Pareto fronts under the BLO framework. The project will investigate stable learning-to-precondition to exploit the smoothness of the BLO updates to speed up the optimization. To quantify the robustness of the decision accountability, the framework searches the usually undefined boundary between robustness and sensitivity of accountable models. The project proposes a trust-region search with complementary reinforcement learning policies to surgically and differentially balance robustness and sensitivity. The BLO framework provides provenance and meta-explanations for the optimal explanations and fair models. The project will also address the computational efficiency of BLO on large graphs through graph partition, first-order approximation, and advanced linear algebra techniques. Lastly, the project will analyze the convergence, uniqueness, and trade-offs in the BLO problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。图形表示真实世界的实体及其连接,在不同的学科中发现,如计算机科学,土木工程和生物信息学。机器学习是一种有用的技术,可以在大规模的图形数据集上做出决策,以帮助防止网络攻击,减少能源浪费,发明新的疾病治疗方法。不幸的是,复杂的图结构降低了机器决策的责任,这可能是1)人类用户难以理解,2)对某些亚群或个人的歧视。该项目将把人类对图形的先验知识作为机器决策的透明度和公平性约束。在不同的需求下,该项目将全面发现多个竞争透明度和公平目标的有用权衡,以帮助人类理解和采用机器决策。由于图形的变化,机器决策的波动性可能会危及它们的问责制,该项目将发现变化的条件,在这些条件下,可以而且应该期望强大的透明度和公平性。政府、监管机构和组织可以依靠发明的技术来审计民用基础设施运营、在线社交网络和商业。研究材料、药物和人脑网络的科学家将通过他们设计的约束从问责制中受益。通过出版物,教程,课程和研讨会,该项目将培训本科生和研究生,其中许多人代表性不足。K6-12学生将通过互动角色扮演计算机游戏和为外行用户设计的讲座,通过推广活动接受关于图形的机器学习的教育。为了实现这些目标,该项目确定了负责任ML的新挑战,并在BLO(双层优化)框架下解决了这些挑战。与没有特定领域约束的问责制不同,该项目将设计人在回路约束生成方法,以帮助指定图形数据的相关约束。约束可能是众多的和不确定的,因此,该项目发明了通过优化,分层邻近方法和机会约束优化的差异。与负责ML的标量优化不同,该项目旨在有效的多目标权衡,并提出约束向量优化和在BLO框架下持续探索局部帕累托前沿。该项目将研究稳定的预处理学习,以利用BLO更新的平滑性来加速优化。为了量化决策问责的鲁棒性,该框架搜索了问责模型的鲁棒性和敏感性之间通常不确定的边界。该项目提出了一种具有互补强化学习策略的信任区域搜索,以手术和差异化地平衡鲁棒性和敏感性。BLO框架为最优解释和公平模型提供了出处和元解释。该项目还将通过图分区,一阶近似和高级线性代数技术来解决大型图上BLO的计算效率。最后,该项目将分析BLO问题的收敛性,独特性和权衡。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inconsistent Matters: A Knowledge-Guided Dual-Consistency Network for Multi-Modal Rumor Detection
A Differential Geometric View and Explainability of GNN on Evolving Graphs
  • DOI:
    10.48550/arxiv.2403.06425
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yazheng Liu;Xi Zhang;Sihong Xie
  • 通讯作者:
    Yazheng Liu;Xi Zhang;Sihong Xie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sihong Xie其他文献

Subgroup Fairness in Graph-based Spam Detection
基于图的垃圾邮件检测中的子组公平性
  • DOI:
    10.48550/arxiv.2204.11164
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiaxin Liu;Yuefei Lyu;Xi Zhang;Sihong Xie
  • 通讯作者:
    Sihong Xie
Implementing Recycling Methods for Linear Systems in Python with an Application to Multiple Objective Optimization
在 Python 中实现线性系统的回收方法并应用于多目标优化
Automatic Assignment of Bonded Force Field Parameters for Small Molecules Using Machine Learning
  • DOI:
    10.1016/j.bpj.2018.11.1563
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Praveer Narwelkar;Hui Sun Lee;Sihong Xie;Wonpil Im
  • 通讯作者:
    Wonpil Im
Mining weighted frequent closed episodes over multiple sequences
挖掘多个序列上的加权频繁闭合事件
  • DOI:
    10.17559/tv-20180218021747
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Guoqiong Liao;Xiaoting Yang;Sihong Xie;Philip S. Yu;Changxuan Wan
  • 通讯作者:
    Changxuan Wan
Constructing plausible innocuous pseudo queries to protect user query intention
构建合理无害的伪查询来保护用户查询意图
  • DOI:
    10.1016/j.ins.2015.07.010
  • 发表时间:
    2015-12
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Gu;ong Xu;Guiling Li;Sihong Xie;Philip S. Yu
  • 通讯作者:
    Philip S. Yu

Sihong Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sihong Xie', 18)}}的其他基金

SaTC: CORE: Small: Collaborative: Learning Dynamic and Robust Defenses Against Co-Adaptive Spammers
SaTC:核心:小型:协作:学习针对自适应垃圾邮件发送者的动态且强大的防御
  • 批准号:
    1931042
  • 财政年份:
    2019
  • 资助金额:
    $ 55.65万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311274
  • 财政年份:
    2023
  • 资助金额:
    $ 55.65万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311275
  • 财政年份:
    2023
  • 资助金额:
    $ 55.65万
  • 项目类别:
    Standard Grant
Bilevel Optimization for Training Generalizable Language Models
用于训练可推广语言模型的双层优化
  • 批准号:
    23K16940
  • 财政年份:
    2023
  • 资助金额:
    $ 55.65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Advanced Machine Learning with Bilevel Optimization
具有双层优化的高级机器学习
  • 批准号:
    DP230101540
  • 财政年份:
    2023
  • 资助金额:
    $ 55.65万
  • 项目类别:
    Discovery Projects
A Bilevel Optimization Approach to Integrating Personalized Treatment with Healthcare Resource Planning
将个性化治疗与医疗资源规划相结合的双层优化方法
  • 批准号:
    2321399
  • 财政年份:
    2023
  • 资助金额:
    $ 55.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Distributed Bilevel Optimization in Multi-Agent Systems
协作研究:多智能体系统中的分布式双层优化
  • 批准号:
    2326592
  • 财政年份:
    2023
  • 资助金额:
    $ 55.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Distributed Bilevel Optimization in Multi-Agent Systems
协作研究:多智能体系统中的分布式双层优化
  • 批准号:
    2326591
  • 财政年份:
    2023
  • 资助金额:
    $ 55.65万
  • 项目类别:
    Standard Grant
Theory and algorithms for solving bilevel optimization and other important nonsmooth and/or nonconvex optimization problems
解决双层优化和其他重要的非光滑和/或非凸优化问题的理论和算法
  • 批准号:
    RGPIN-2018-03709
  • 财政年份:
    2022
  • 资助金额:
    $ 55.65万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Computationally Efficient Algorithms for Large-scale Bilevel Optimization Problems
协作研究:大规模双层优化问题的计算高效算法
  • 批准号:
    2127697
  • 财政年份:
    2021
  • 资助金额:
    $ 55.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Computationally Efficient Algorithms for Large-scale Bilevel Optimization Problems
协作研究:大规模双层优化问题的计算高效算法
  • 批准号:
    2127696
  • 财政年份:
    2021
  • 资助金额:
    $ 55.65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了