SaTC: CORE: Small: Collaborative: Learning Dynamic and Robust Defenses Against Co-Adaptive Spammers

SaTC:核心:小型:协作:学习针对自适应垃圾邮件发送者的动态且强大的防御

基本信息

  • 批准号:
    1931042
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Online reputation systems are ubiquitous for customers to evaluate businesses, products, people, and organizations based on reviews from the crowd. For example, Yelp and TripAdvisor rank restaurants and hotels based on user reviews, and RateMDs allows patients to review doctors and hospitals. These systems can however be leveraged by spammers to mislead and manipulate the inexperienced customers with fake but well-disguised reviews (spams). To comprehensively protect customers and honest businesses, advanced spam detection techniques have been deployed. Nonetheless, intelligent spammers can still probe and then evolve to bypass the deployed detectors. This project investigates dynamic and robust countermeasures to defeat the evolving spammers. This research will allow regulatory agencies to enforce a more fair, transparent, and trustworthy online environment, encourage business owners to offer higher quality products and services rather than fake opinions, and ultimately, allow consumers to increasingly rely on the reputation systems confidently to save money, time and even lives.The project will investigate the design of adaptive spam detection technologies and systems against intelligent spammers that learn to bypass static detectors. The investigation will follow two principles: (1) the goals and workings of the detectors and spammers can be sensed through their behaviors; (2) both parties should act dynamically to optimally defeat their opponents who co-adapt with the other's behaviors. Based on these principles, the researchers aim to: (i) investigate the footprint of dynamic spamming and formalize the gained insights into evasion models against static detectors; (ii) model the interactions between the evolving spammer and dynamic detections through deep reinforcement learning and Markov games; and (iii) introduce multiple cooperative spammers to inform more complex spammer-detector co-adaptations through multi-agent and hierarchical reinforcement learning. The research aims will be complemented by metrics and evaluations that capture realistic spammer and detector goals and constraints. The project will result in datasets, algorithms, and testbed system for the research community, and gamified educational software and materials to increase awareness of fake contents among a broader population.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在线信誉系统无处不在,客户可以根据人群的评论来评估企业,产品,人员和组织。例如,Yelp和TripAdvisor根据用户评论对餐馆和酒店进行排名,RateMD允许患者评论医生和医院。然而,垃圾邮件发送者可以利用这些系统来误导和操纵没有经验的客户,使用虚假但伪装得很好的评论(垃圾邮件)。为了全面保护客户和诚实的企业,我们部署了先进的垃圾邮件检测技术。尽管如此,智能垃圾邮件发送者仍然可以探测,然后进化到绕过部署的探测器。这个项目研究动态和强大的对策,以击败不断发展的垃圾邮件发送者。这项研究将使监管机构能够实施一个更加公平,透明和值得信赖的在线环境,鼓励企业主提供更高质量的产品和服务,而不是虚假的意见,并最终使消费者能够越来越自信地依赖声誉系统来省钱,该项目将研究自适应垃圾邮件检测技术和系统的设计,以对抗智能垃圾邮件发送者,绕过静电探测器。调查将遵循两个原则:(1)检测器和垃圾邮件发送者的目标和工作可以通过他们的行为来感知;(2)双方都应该动态地采取行动,以最佳方式击败与对方行为相适应的对手。基于这些原则,研究人员的目标是:(i)调查动态垃圾邮件的足迹,并将所获得的对静态检测器的规避模型的见解形式化;(ii)通过深度强化学习和马尔可夫博弈对不断发展的垃圾邮件发送者和动态检测之间的相互作用进行建模;以及(iii)引入多个合作的垃圾邮件发送者,以通过多代理和分层强化学习来通知更复杂的垃圾邮件发送者-检测器协同适应。研究目标将得到补充的指标和评估,捕捉现实的垃圾邮件发送者和检测器的目标和限制。该项目将为研究界提供数据集、算法和测试平台系统,以及游戏化的教育软件和材料,以提高更广泛人群对虚假内容的认识。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-learn to Explain Siamese Networks Robustly
  • DOI:
    10.1109/icdm51629.2021.00116
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chao Chen;Yifan Shen;Guixiang Ma;Xiangnan Kong;S. Rangarajan;Xi Zhang;Sihong Xie
  • 通讯作者:
    Chao Chen;Yifan Shen;Guixiang Ma;Xiangnan Kong;S. Rangarajan;Xi Zhang;Sihong Xie
Inconsistent Matters: A Knowledge-Guided Dual-Consistency Network for Multi-Modal Rumor Detection
Interpretable and Effective Reinforcement Learning for Attacking against Graph-based Rumor Detection
Certification and Trade-off of Multiple Fairness Criteria in Graph-based Spam Detection
Active Search using Meta-Bandits
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sihong Xie其他文献

Subgroup Fairness in Graph-based Spam Detection
基于图的垃圾邮件检测中的子组公平性
  • DOI:
    10.48550/arxiv.2204.11164
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiaxin Liu;Yuefei Lyu;Xi Zhang;Sihong Xie
  • 通讯作者:
    Sihong Xie
Implementing Recycling Methods for Linear Systems in Python with an Application to Multiple Objective Optimization
在 Python 中实现线性系统的回收方法并应用于多目标优化
Automatic Assignment of Bonded Force Field Parameters for Small Molecules Using Machine Learning
  • DOI:
    10.1016/j.bpj.2018.11.1563
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Praveer Narwelkar;Hui Sun Lee;Sihong Xie;Wonpil Im
  • 通讯作者:
    Wonpil Im
Mining weighted frequent closed episodes over multiple sequences
挖掘多个序列上的加权频繁闭合事件
  • DOI:
    10.17559/tv-20180218021747
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Guoqiong Liao;Xiaoting Yang;Sihong Xie;Philip S. Yu;Changxuan Wan
  • 通讯作者:
    Changxuan Wan
Constructing plausible innocuous pseudo queries to protect user query intention
构建合理无害的伪查询来保护用户查询意图
  • DOI:
    10.1016/j.ins.2015.07.010
  • 发表时间:
    2015-12
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Gu;ong Xu;Guiling Li;Sihong Xie;Philip S. Yu
  • 通讯作者:
    Philip S. Yu

Sihong Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sihong Xie', 18)}}的其他基金

CAREER: Bilevel Optimization for Accountable Machine Learning on Graphs
职业:图上负责任的机器学习的双层优化
  • 批准号:
    2145922
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
  • 批准号:
    82371765
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
  • 批准号:
    22303037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
  • 批准号:
    92053110
  • 批准年份:
    2020
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
  • 批准号:
    81902805
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
  • 批准号:
    41973063
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
CORDEX-CORE区域气候模拟与预估研讨会
  • 批准号:
    41981240365
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
  • 批准号:
    31900138
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
  • 批准号:
    2343387
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
  • 批准号:
    2341206
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Socio-Technical Approaches for Securing Cyber-Physical Systems from False Claim Attacks
SaTC:核心:小型:保护网络物理系统免受虚假声明攻击的社会技术方法
  • 批准号:
    2310470
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Study, Detection and Containment of Influence Campaigns
SaTC:核心:小型:影响力活动的研究、检测和遏制
  • 批准号:
    2321649
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了