CAREER: Improving Prosthesis Usability through Enhanced Touch Feedback and Intelligent Control

职业:通过增强的触摸反馈和智能控制提高假肢的可用性

基本信息

  • 批准号:
    2146206
  • 负责人:
  • 金额:
    $ 73.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant will support research that contributes to the knowledge needed to improve the functional usability of upper-limb prostheses, thereby promoting the progress of science, advancing national health, and securing national defense. Upper-limb prostheses are artificial limbs used to replace someone’s natural limb after limb amputation. These limbs are often motorized, featuring hands and fingers that move much like our natural hands and fingers. Unfortunately, these devices do not provide the wearer with haptic (touch-based) information. Haptic information is essential for many tasks, such as picking up an egg without cracking it, closing a resealable bag, or drinking from a plastic cup. This award supports fundamental research needed to develop a new type of prosthesis that intelligently interacts with the world like our natural limbs and provides wearers with haptic information of those interactions. This new prosthesis will interpret the wearers’ task intent and assist the wearer in accomplishing tasks with minimal mental effort. Improving the usability of prostheses will ultimately lead to a better quality of life for individuals experiencing limb loss, including military veterans. Likewise, the knowledge gained through this research will prove beneficial to other types of assistive devices, allowing more individuals to return to the workforce after injury. Therefore, results from this research will benefit the US economy and society. This research involves several disciplines, including mechanical design, electronics, control theory, biomedicine, and robotics. Through this interdisciplinary approach, the research will broaden participation amongst the engineers, scientists, and physicians developing assistive technologies and those in society who directly or indirectly benefit from these technologies.Dexterous manipulation with our upper-limbs originates from a hierarchical control scheme in which task intent is converted to operational motor actions in the peripheral limbs that appropriately tune the limb’s mechanical impedance to accomplish the task goals, all while haptic feedback from the limb is used to track task progress and refine the motor plan. Achieving comparable dexterous control capabilities with an upper-limb prosthesis requires a robust understanding of the appropriate means by which this hierarchical control scheme can be extended out through the prosthesis to the environment. This research seeks to fill this knowledge gap through investigations into intelligent control that will enable an amputee to perform dexterous tasks considered infeasible with current prosthesis technology. The research team will utilize data-driven approaches to model task intent from physiological and environmental interaction measures and derive and empirically validate impedance control and haptic feedback strategies that adapt to the amputee’s intent and the context of the task being performed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师早期职业发展(Career)基金将支持有助于提高上肢假肢功能可用性所需知识的研究,从而促进科学进步,促进国民健康,并确保国防安全。上肢假体是在肢体截肢后用来代替人的自然肢体的假肢。这些肢体通常是机动的,它们的手和手指就像我们的天然手和手指一样运动。不幸的是,这些设备不能为佩戴者提供触觉(基于触摸)信息。触觉信息对于许多任务都是必不可少的,比如拿起一个鸡蛋而不打碎它,关上一个可再密封的袋子,或者用塑料杯喝水。该奖项支持开发一种新型假肢所需的基础研究,这种假肢可以像我们的天然肢体一样智能地与世界互动,并为佩戴者提供这些互动的触觉信息。这种新义肢将解读佩戴者的任务意图,并帮助佩戴者以最小的脑力完成任务。提高假肢的可用性最终将为包括退伍军人在内的肢体丧失者带来更好的生活质量。同样,通过这项研究获得的知识将被证明对其他类型的辅助设备有益,使更多的人在受伤后重返工作岗位。因此,这项研究的结果将有利于美国的经济和社会。这项研究涉及多个学科,包括机械设计、电子学、控制理论、生物医学和机器人。通过这种跨学科的方法,这项研究将扩大开发辅助技术的工程师、科学家和医生以及直接或间接受益于这些技术的社会人士的参与。我们上肢的灵巧操作源于一种分层控制方案,在这种控制方案中,任务意图被转换为外围肢体的操作运动动作,适当地调整肢体的机械阻抗来完成任务目标,同时肢体的触觉反馈用于跟踪任务进度并完善运动计划。要实现与上肢假体相当的灵巧控制能力,需要对适当的方法有充分的了解,通过这种方法,这种分层控制方案可以通过假体扩展到环境中。本研究旨在通过对智能控制的研究来填补这一知识空白,这将使截肢者能够执行当前假肢技术认为不可行的灵巧任务。研究团队将利用数据驱动的方法,从生理和环境相互作用的测量中模拟任务意图,并得出和经验验证阻抗控制和触觉反馈策略,以适应截肢者的意图和正在执行的任务的背景。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Brown其他文献

TYM (Test Your Memory) Testing
TYM(测试你的记忆力)测试
Impaired C3b/iC3b deposition on Streptococcus pneumoniae in serum from patients with systemic lupus erythematosus.
系统性红斑狼疮患者血清中肺炎链球菌上的 C3b/iC3b 沉积受损。
  • DOI:
    10.1093/rheumatology/kep289
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    F. Goldblatt;J. Yuste;D. Isenberg;Anisur Rahman;Jeremy Brown
  • 通讯作者:
    Jeremy Brown
A marriage of convenience? A qualitative study of colleague supervision of master's level dissertations
  • DOI:
    10.1016/j.nedt.2010.12.025
  • 发表时间:
    2011-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jennifer Kirton;Katherine Straker;Jeremy Brown;Barbara Jack;Annette Jinks
  • 通讯作者:
    Annette Jinks
Efficient LiDAR-Based Object Segmentation and Mapping for Maritime Environments
适用于海洋环境的基于 LiDAR 的高效对象分割和测绘
Differential Expression of Cell Surface Markers by Ovine Respiratory Tract Dendritic Cells
绵羊呼吸道树突状细胞细胞表面标志物的差异表达

Jeremy Brown的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Brown', 18)}}的其他基金

Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
  • 批准号:
    MR/Y008693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Research Grant
Identifying the correlates of protection against Streptococcus pneumoniae respiratory tract infection using a human challenge model
使用人体挑战模型确定预防肺炎链球菌呼吸道感染的相关性
  • 批准号:
    MR/Z503721/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Research Grant
Travel: Improving the Utility of Haptic Feedback in Upper-Limb Prosthesis Control: Establishing user-centric guidelines for engineering innovation
旅行:提高上肢假肢控制中触觉反馈的效用:建立以用户为中心的工程创新指南
  • 批准号:
    2331318
  • 财政年份:
    2023
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Standard Grant
Collaborative Research: OPUS: CRS: A Synthetic View of Evolutionary Heterogeneity and the Tree of Life
合作研究:OPUS:CRS:进化异质性和生命之树的综合观点
  • 批准号:
    1950759
  • 财政年份:
    2020
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Standard Grant
Collaborative Research: CIBR: CloudForest: A Portable Cyberinfrastructure Workflow To Advance Biological Insight from Massive, Heterogeneous Phylogenomic Datasets
合作研究:CIBR:CloudForest:一种便携式网络基础设施工作流程,可从海量、异质的系统发育数据集中推进生物学洞察
  • 批准号:
    1934156
  • 财政年份:
    2019
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Standard Grant
CHS: Small: Understanding Environment Perception and Task Performance in Human-in-the-Loop Tele-robotic Systems (HiLTS)
CHS:小型:了解人在环远程机器人系统 (HiLTS) 中的环境感知和任务性能
  • 批准号:
    1910939
  • 财政年份:
    2019
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Continuing Grant
Adjunct antibody therapy for severe antibiotic-resistant Acinetobacter baumannii infections
严重抗生素耐药鲍曼不动杆菌感染的辅助抗体治疗
  • 批准号:
    MR/S004394/1
  • 财政年份:
    2018
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Research Grant
Universal protection against Streptococcus pneumoniae by recombinant glycoconjugate vaccines
重组糖复合物疫苗对肺炎链球菌具有普遍保护作用
  • 批准号:
    MR/R001871/1
  • 财政年份:
    2018
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Research Grant
Adjunct antibody therapy for severe antibiotic-resistant Acinetobacter baumannii infections
严重抗生素耐药鲍曼不动杆菌感染的辅助抗体治疗
  • 批准号:
    MC_PC_17227
  • 财政年份:
    2018
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Intramural
Training in Innovative Phylogenetics and Comparative Methods at the Society of Systematic Biologists Meeting, January, 2017, Baton Rouge, Louisiana
系统生物学家协会会议上的创新系统发育学和比较方法培训,2017 年 1 月,路易斯安那州巴吞鲁日
  • 批准号:
    1723656
  • 财政年份:
    2017
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Standard Grant

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
  • 批准号:
    2338139
  • 财政年份:
    2025
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Continuing Grant
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
  • 批准号:
    MR/Y034244/1
  • 财政年份:
    2025
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Fellowship
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Standard Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Continuing Grant
Improving Resilience of MCDI for Water Supply in Remote Communities
提高偏远社区供水的 MCDI 弹性
  • 批准号:
    DP240101469
  • 财政年份:
    2024
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Discovery Projects
Improving efficacy of biopesticides through understanding mode of action
通过了解作用方式提高生物农药的功效
  • 批准号:
    IE230100103
  • 财政年份:
    2024
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Early Career Industry Fellowships
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Collaborative R&D
mPatch: a rapid test for improving diagnosis and triage of melanoma patients in primary care
mPatch:一种快速测试,用于改善初级保健中黑色素瘤患者的诊断和分诊
  • 批准号:
    MR/Y503381/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Research Grant
Multi-agent Self-improving of Large Language Models (LLMs)
大型语言模型 (LLM) 的多智能体自我改进
  • 批准号:
    2903811
  • 财政年份:
    2024
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Studentship
Improving females' health and performance by mitigating heat strain
通过缓解热应激改善女性的健康和表现
  • 批准号:
    MR/X036235/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.03万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了