CAREER: Unifying short and long read RNA-seq analysis of alternative splicing using network flow models
职业:使用网络流模型统一选择性剪接的短读和长读 RNA-seq 分析
基本信息
- 批准号:2146398
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Alternative splicing (AS), i.e. variation in the regions of A precursor messenger RNA removed, is a crucial cellular process in higher organisms. It has been found to be key for cellular responses to external stimuli from immune response in mammals to climate adaptation in plants, and it has been implicated in common diseases, from autoimmune (e.g. multiple sclerosis) to neurodegenerative (e.g., Alzheimer’s disease). Despite its importance, the tools to study AS have been limited by technological (short read) and conceptual problems. The former problem is now being addressed by the increasing availability and affordability of long read sequencing. However, the latter problem remains unaddressed. Long reads have been used to identify which alternatively spliced isoforms are present in cells, but not to statistically identify changes in AS or the specific splicing events involved. This research project is an attempt to fundamentally transform how AS is analyzed, into a unified framework making joint use of all available data (both long and short reads). Software tools will be developed under the FAIR (Findable, Accessible, Interoperable, Reusable) criteria including open source sharing of code and package distribution. An annual three-day codeathon based at New York Genome Center (NYGC) specifically targeting women and underrepresented minorities (recruited from Barnard College and Hunter College respectively) will be organized. This project proposes a new conceptual framework for AS analysis that 1) unifies local and isoform-level quantification, 2) accounts for uncertainty to enable powerful statistical testing, 3) enables exploratory data analysis of large-scale datasets, and 4) can jointly leverage short and/or long read RNA-seq data. This framework will use network flow algorithms to connect local splicing events with isoform usage rates, develop well-calibrated statistical tests, and convex dimensionality reduction techniques accounting for varying noise levels. These tools will be developed in the context of impactful real world applications (neurodevelopmental gene regulation, neurodegenerative disease progression, and spliceosomal mutant cancer) in close collaboration with colleagues at the NYGC, the non-profit research institute where the PI is co-affiliated. Results from the project will be posted at https://daklab.github.io/the_splice_must_flow/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。选择性剪接(AS),即前体信使RNA移除区域的变异,是高等生物中一个至关重要的细胞过程。研究发现,从哺乳动物的免疫反应到植物的气候适应,它是细胞对外部刺激反应的关键,并且它与常见疾病有关,从自身免疫性疾病(如多发性硬化症)到神经退行性疾病(如阿尔茨海默病)。尽管它很重要,但研究AS的工具受到技术(简短阅读)和概念问题的限制。前一个问题现在正通过长读测序的日益可用性和可负担性得到解决。但是,后一个问题仍然没有得到解决。长读取已被用于确定细胞中存在哪些选择性剪接同种异构体,但不能从统计学上确定AS的变化或所涉及的特定剪接事件。这个研究项目试图从根本上将AS的分析方式转变为一个统一的框架,使所有可用的数据(包括长读和短读)都能被联合使用。软件工具将在FAIR(可查找、可访问、可互操作、可重用)标准下开发,包括代码和包分发的开源共享。每年在纽约基因组中心(NYGC)举办为期三天的代码死亡大会,专门针对女性和代表性不足的少数族裔(分别从巴纳德学院和亨特学院招募)。该项目提出了一个新的AS分析概念框架,1)统一局部和同型水平量化,2)考虑不确定性以实现强大的统计测试,3)允许对大规模数据集进行探索性数据分析,4)可以共同利用短读和/或长读RNA-seq数据。该框架将使用网络流算法将具有相同使用率的局部拼接事件连接起来,开发校准良好的统计测试,以及考虑不同噪声水平的凸维降维技术。这些工具将在有影响力的现实世界应用(神经发育基因调控、神经退行性疾病进展和剪接体突变癌症)的背景下与NYGC的同事密切合作开发,NYGC是PI共同附属的非营利性研究机构。该项目的结果将发布在https://daklab.github.io/the_splice_must_flow/.This上,该奖项反映了美国国家科学基金会的法定使命,并通过基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Knowles其他文献
System Identification for Continuous-time Linear Dynamical Systems
连续时间线性动力系统的系统辨识
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Peter Halmos;Jonathan W. Pillow;David Knowles - 通讯作者:
David Knowles
Investigating grain-resolved evolution of lattice strains during plasticity and creep using 3DXRD and crystal plasticity modelling
- DOI:
10.1016/j.actamat.2024.120250 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Farhan Ashraf;Ranggi S. Ramadhan;Abdullah Al Mamun;James A.D. Ball;Eralp Demir;Thomas Connolley;David M. Collins;Mahmoud Mostafavi;David Knowles - 通讯作者:
David Knowles
A comprehensive comparison of creep-fatigue life assessment through leading industrial codes
通过领先的工业规范对蠕变疲劳寿命评估的综合比较
- DOI:
10.1016/j.ijpvp.2025.105497 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:3.500
- 作者:
Younes Belrhiti;Cory Hamelin;Pierre Lamagnère;David Knowles;Mahmoud Mostafavi - 通讯作者:
Mahmoud Mostafavi
Effect of grain boundary misorientation and carbide precipitation on damage initiation: A coupled crystal plasticity and phase field emdamage/em study
晶界取向差和碳化物析出对损伤萌生的影响:晶体塑性与相场耦合损伤研究
- DOI:
10.1016/j.ijplas.2023.103854 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:12.800
- 作者:
Michael Salvini;Nicolò Grilli;Eralp Demir;Siqi He;Tomas Martin;Peter Flewitt;Mahmoud Mostafavi;Christopher Truman;David Knowles - 通讯作者:
David Knowles
Microstructural evolution of DS CM186LC during creep and thermal exposure
- DOI:
10.1007/bf03026354 - 发表时间:
2000-04-01 - 期刊:
- 影响因子:4.000
- 作者:
Chang-Yong Jo;Doo-Hyun Kim;Seong-Moon Seo;In-Soo Kim;Seung-Joo Choe;David Knowles - 通讯作者:
David Knowles
David Knowles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Knowles', 18)}}的其他基金
SINDRI: Synergistic utilisation of INformatics and Data centRic Integrity engineering
SINDRI:信息学和数据中心完整性工程的协同利用
- 批准号:
EP/V038079/1 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Research Grant
相似海外基金
UNIfying Grid-FOllowing And Grid-foRMing Control In Inverter-based Resources (UNIFORM)
统一基于逆变器的资源中的网格跟随和网格形成控制(UNIFORM)
- 批准号:
EP/Y001575/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Unifying Object Detection and Image Captioning using Vision-Language Knowledge Base for Open-World Comprehension
使用视觉语言知识库统一对象检测和图像描述以实现开放世界理解
- 批准号:
24K20830 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Dual Reinforcement Learning: A Unifying Framework with Guarantees
职业:双重强化学习:有保证的统一框架
- 批准号:
2340651 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
A unifying model for ion exchange membranes – towards a low carbon future
离子交换膜的统一模型 — 迈向低碳未来
- 批准号:
DP240101405 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
CAREER: Unifying Scientific Knowledge with Machine Learning for Forward, Inverse, and Hybrid Modeling of Scientific Systems
职业:将科学知识与机器学习相结合,对科学系统进行正向、逆向和混合建模
- 批准号:
2239328 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Unifying Pre-training and Multilingual Semantic Representation Learning for Low-resource Neural Machine Translation
统一预训练和多语言语义表示学习以实现低资源神经机器翻译
- 批准号:
22KJ1843 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Unifying discrete and continuous methods in quantum information theory
统一量子信息论中的离散和连续方法
- 批准号:
FT230100571 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
ARC Future Fellowships
"Circular Transparency Platform", unifying the apparel value chain: From Thread to Second Life+. Enabling stakeholders from manufacturing and retail, to engage consumers with visual, incentivised Environmental, Social and Circular product experiences
“循环透明平台”,统一服装价值链:从Thread到Second Life。
- 批准号:
10059608 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
Unifying models of information processing across machine learning, artificial intelligence and neuroscience
统一机器学习、人工智能和神经科学的信息处理模型
- 批准号:
EP/X011151/1 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Fellowship
Unifying Probabilistic Computation for PDEs and Linear Systems
统一偏微分方程和线性系统的概率计算
- 批准号:
EP/Y001028/1 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Research Grant