DDRIG: The Algorithmic Translation of Expertise: Credible Knowledge and Machine Learning in Medicine

DDRIG:专业知识的算法翻译:医学中的可信知识和机器学习

基本信息

  • 批准号:
    2146856
  • 负责人:
  • 金额:
    $ 1.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

The use of artificial intelligence (AI) and machine learning (ML) to assist experts in making sophisticated professional decisions is well under way in such areas as medical diagnosis, drug development, and public health. This project focuses on an especially promising application of ML systems: their use to support medical diagnoses by analyzing images, such as CT scans and digitized pathology slides. This research will study the development of ML-based medical image analysis systems, tracing their production, application, and regulation. It will pay special attention to how medical experts and policymakers assess the credibility of the diagnostic suggestions that ML systems make. The research aims to contribute to the use of ML tools to improve the quality and accessibility of healthcare and to inform policymaking about the introduction of these technologies. Developing an ML system involves translating human expertise into a new algorithmic form. This study will investigate novel questions raised by this process about the credibility of diagnosis. How can medical experts evaluate the credibility of ML systems, given that the internal workings of these systems are complex and, to some extent, inscrutable? How might the rise of ML systems affect the credibility of human experts? How will understanding of expertise change when well-trained experts, historically the most credible judges of complex professional questions, find their judgments implicitly challenged by AI systems? To explore these questions, the investigators will conduct ethnography at two AI startups, conduct semi-structured interviews with engineers and clinicians, and analyze written materials. By analyzing negotiations over credible knowledge in this context, the project will provide insights about how the credibility of the human and the machine are assessed. Beyond its immediate implications for understanding the credibility of ML systems, the study aims to enrich scholarship in the sociology of expertise, medical sociology, data studies, and the governance of emerging technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在医疗诊断、药物开发和公共卫生等领域,人工智能(AI)和机器学习(ML)的使用正在帮助专家做出复杂的专业决策。该项目侧重于ML系统的一个特别有前途的应用:通过分析图像(如CT扫描和数字化病理切片)来支持医疗诊断。本研究将探讨以ML为基础的医学影像分析系统的发展,追踪其生产、应用与规范。它将特别关注医学专家和政策制定者如何评估ML系统提出的诊断建议的可信度。该研究旨在促进ML工具的使用,以提高医疗保健的质量和可及性,并为政策制定提供有关这些技术的信息。开发ML系统涉及将人类专业知识转化为新的算法形式。本研究将探讨这一过程提出的关于诊断可信度的新问题。鉴于机器学习系统的内部运作非常复杂,并且在某种程度上难以理解,医学专家如何评估这些系统的可信度?ML系统的兴起如何影响人类专家的可信度?当训练有素的专家,历史上最可靠的复杂专业问题的法官,发现他们的判断受到人工智能系统的挑战时,对专业知识的理解将如何改变?为了探索这些问题,研究人员将在两家人工智能初创公司进行人种学研究,对工程师和临床医生进行半结构化访谈,并分析书面材料。通过分析在这种情况下关于可信知识的谈判,该项目将提供有关如何评估人类和机器的可信度的见解。除了对理解机器学习系统可信度的直接影响外,该研究还旨在丰富专业知识社会学、医学社会学、数据研究和新兴技术治理方面的学术研究。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Hilgartner其他文献

A Stress Test for Politics: Insights from the Comparative Covid Response Project (CompCoRe)
政治压力测试:比较新冠应对项目 (CompCoRe) 的见解

Stephen Hilgartner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Hilgartner', 18)}}的其他基金

RAPID: Collaborative Research: A Comparative Study of Expertise for Policy in the COVID-19 Pandemic
RAPID:协作研究:COVID-19 大流行政策专业知识的比较研究
  • 批准号:
    2028567
  • 财政年份:
    2020
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
Standard: Ethics-in-the-Making: Changing Practices in Data Science
标准:正在形成的道德规范:改变数据科学的实践
  • 批准号:
    1926174
  • 财政年份:
    2019
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
Scholars Award: An Empirical Study of the Making and Re-Making of Knowledge About Risk
学者奖:风险知识制造和再制造的实证研究
  • 批准号:
    1734122
  • 财政年份:
    2017
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Governing Foodborne Disease in a Changing World
博士论文研究:在不断变化的世界中治理食源性疾病
  • 批准号:
    1256027
  • 财政年份:
    2013
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Scientific Evidence concerning Humanitarian Interventions in Israeli Conflict Zones
博士论文研究:有关以色列冲突地区人道主义干预的科学证据
  • 批准号:
    1230057
  • 财政年份:
    2012
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
Doct Dissertation Research: Blueprints for Behavior: Constructing Experimental Systems in Behavioral Genetics
博士论文研究:行为蓝图:构建行为遗传学实验系统
  • 批准号:
    0749635
  • 财政年份:
    2008
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
Dissertation Research: Governmental Decision-Making and Uncertainty: A study of the AIDS Epidemic in South Africa and India
论文研究:政府决策和不确定性:南非和印度艾滋病流行研究
  • 批准号:
    0551463
  • 财政年份:
    2006
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
SGTR -- Studying Emerging Technologies: Empirical Research in a Speculative Space
SGTR——研究新兴技术:投机空间中的实证研究
  • 批准号:
    0352000
  • 财政年份:
    2004
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Continuing Grant
Dissertation Research: The Tainted Gift: A comparative study of the framings of risk and safety of the contamination of the blood supply with AIDS virus in France and the U.S
论文研究:受污染的礼物:法国和美国艾滋病病毒血液供应污染风险和安全框架的比较研究
  • 批准号:
    0135920
  • 财政年份:
    2002
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
SGER: Collaborative Research: The Machinery of Representation--Voting Technologies and the 2000 Presidential Election
SGER:合作研究:代表机制——投票技术和 2000 年总统选举
  • 批准号:
    0109662
  • 财政年份:
    2001
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant

相似海外基金

AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
Australian Experiences of Algorithmic Culture on TikTok
澳大利亚在 TikTok 上的算法文化体验
  • 批准号:
    DP240102939
  • 财政年份:
    2024
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Discovery Projects
Algorithmic topology in low dimensions
低维算法拓扑
  • 批准号:
    EP/Y004256/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Fellowship
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
Conference: ANTS XVI: Algorithmic Number Theory Symposium 2024
会议:ANTS XVI:算法数论研讨会 2024
  • 批准号:
    2401305
  • 财政年份:
    2024
  • 资助金额:
    $ 1.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了